Histopathological changes after treatment of *Mycoplasma bovis* infected Does with Zinc oxide nanoparticles as a new tool.

A. Fathi, 1, A. Almuhammady, 2, Mona, M. Sobhy3, Hala, MF. ElMiniawy4 and Marwa, S. Khattab4

1Immunity Unit, Animal Reproduction Research Institute, Agriculture Research Centre, Cairo, Egypt.
2Arab Center for Nanotechnology, Cairo, Egypt.
3Reproductive Diseases Department, Animal Reproduction Research Institute, Agriculture Research Institute, Cairo, Egypt.
4Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt.

Mycoplasma bovis mastitis is highly contagious, results in a severe milk production drop in an affected cow. Mastitis in dairy animals is causing heavy economic losses worldwide by loss of milk production, treatment costs and premature culling of chronically infected animals. Nanotechnology has the potential to enable revolutionary changes in near future given drugs and vaccines can be more effective in treating and preventing the diseases than current technologies, thus reducing cost. Twenty multiparous rabbit does were used after giving birth. The aim of study is to evaluate efficiency of antibiotic nanoparticle on induced rabbit mastitis infected with *M. bovis*. Animals were divided into four groups’ five rabbits each: Gp. 1 was a control negative group. Gp. 2 is the control positive which was inoculated intraperitoneally with freshly prepared 10⁹ cfu *M. bovis*. Gp. 3 was inoculated intraperitoneally with freshly prepared 10⁹ cfu *M. bovis* for 4 days and then treated with lincospectin antibiotic for 5 days. Gp. 4 was inoculated intraperitoneally by freshly prepared 10⁹ cfu *M. bovis* for 4 days and then treated with lincospectin + zinc oxide (ZnO) nanoparticle for 5 days. Animals were sacrificed after 2 weeks of experiment and udder tissue samples were collected. Histopathological findings, Gp.2, rabbits exhibited histopathological changes in different organs in addition to mammary glands causing mastitis. In Gp.3, there were edema, mononuclear cells infiltration and mild fibroblastic proliferation in the interstitial tissue of the mammary gland. Moreover, some acini were almost devoid of milk secretion. Gp.4, there was mild fibroblastic proliferation in the interstitial tissue and little milk secretion in the mammary acini. We concluded that the lincospectin nanoparticle was effective against *M. bovis*. Furthermore, nanoparticles tagged with antibiotics have been shown to increase the antibiotic interaction, and facilitate binding of antibiotics to bacteria. ZnO-NPs could be formulated in a suitable treatment of mastitis caused by *M. bovis* in dairy cattle.

Keywords: *Mycoplasma bovis*, Zinc Oxide, nanoparticles, mastitis.

Introduction

Mycoplasma bovis is one of the most important pathogenic bovine mycoplasma. It is a wallless bacterium causing bovine mycoplasmosis, showing clinical manifestations in cattle leads to economic losses to dairy industries [1]. Antibiotic treatments are not efficacious. It mainly colonizes the bovine respiratory mucous membrane [2] and has been associated with genital disorders and abortions [3] bovine pneumonia, reduction of semen fertility [4], arthritis [5], decubiti abscesses [6], keratoconjunctivitis [7], otitis [8], poly arthritis [9] and mastitis [10].

Corresponding author: Mona M. Sobhy, E-mail: monagabr17@yahoo.com, Phone: 012000208804

(Received 25/11/2019, accepted 26/12/2019)

DOI: 10.21608/ejvs.2019.19940.1133

©2019 National Information and Documentation Centre (NIDOC)
Lincosamides are broad spectrum antibiotic and Linco-spectin is a combination of lincomycin and spectinomycin. They are indicated in treating serious infections caused by susceptible strains of Streptococci, Pneumococci, and Staphylococci [11]. They are often used as a supportive treatment in preventing chronic respiratory disease associated with Mycoplasma and Coliform infections in chickens [12].

Several strains of Mycoplasma were found to be sensitive to a combination of lincomycin spectinomycin-tyllosin [13]. A rabbit model was used in previous studies to detect the mastitogenic potential of a mycoplasma viz, M. capricolumcapripneumoniae [14], and also of M. canadense [15]. The study on M. canadense revealed subacute to chronic histopathological reaction in rabbit mammary glands with inflammatory response mainly lymphocytic and macrophagic [15] where as that of M. capricolum capripneumoniae recorded a neutrophilic infiltration in acinar lumen and interacinar tissues [14].

M. bovis mastitis is highly contagious and results in a severe milk production drop in an affected cow [16]. Also, causes both sub-clinical and clinical forms of mastitis. Mycoplasma in a herd can include: resistant to therapy, involve all four quarters/multiple quarters at the same time, not painful, cows with fever and off feed, rapid decline in milk production, abnormal milk that is often brown to tan with flaky sediment in watery or serous fluid. Some milk samples when allowed to settle may appear to have a sandy, granular appearance [17]. Mastitis in dairy animals is a multietiological in nature and causing heavy economic losses worldwideby loss of milk production, treatment costs and premature culling of chronically infected animals [10].

Nanotechnology use of materials with dimensions on the atomic or molecular scale become increasingly utilized for medical applications and of great interest as an approach to killing or reducing activity of numerous microorganisms [18]. The use of nanotechnology in medicine has great potential, especially in medical microbiology. Nanoparticleshave been beneficial due to their antimicrobial effect with low toxicity against the host and their ability to specific targets[19]. The aim of study is to evaluate the efficiency of antibiotic nanoparticle on induced rabbit mastitis infected with Mycoplasma bovis.

Materials and Methods

Animals

Twenty multiparous Newzeland rabbit does were used after giving birth. The rabbits were housed individually in ventilated wire cages at a temperature of 23 ± 3°C and humidity at 50–70 %. Rabbits were fed pelleted feed and offered water ad libitum. The experiment was performed according to the guidelines of the Institutional Animal Care and Use Committee of Cairo University, Egypt.

Inoculated Bacteria

Mycoplasma bovis was prepared 10⁶ cfu of freshly M. bovis provided from Animal Reproduction Research Institute, Agriculture Research Center, Giza, Egypt.

Antibiotic nanoparticles

Zinc oxide nanoparticles were kindly obtained from Dr. Abdel Salam Almuhmmady Arab Center for Nanotechnology, Cairo University. Scanning electron microscopy (Hitachi S2150, Krefeld, Germany) was used to image the size and morphology of the Zinc oxide nanoparticles.

Experimental design

Animals were divided into four groups’ five rabbits each:

Gp. 1 was a control negative group not inoculated.
Gp. 2 is the control positive group which was inoculated intraperitoneal (I/P) for 4 days by 1mL of freshly prepared 10⁶cfu M. bovis (Fig. 2).
Gp. 3 was inoculated I/P by 1mL of freshly prepared 10⁶ cfu M. bovis for 4 days and then treated with 1 ml of lincospectin antibiotic for 5 days.
Gp. 4 was inoculated I/P by 1mL of freshly prepared 10⁶ cfu M. bovis for 4 days and then treated with 1 ml of lincospectin + zinc oxide (ZnO) nanoparticles with (8μg/ml) concentration for 5 days.

Animals were sacrificed at the end of the experiment after 21 days of inoculation and udder tissue samples were collected.

Histopathology

Tissue samples from themammary gland of rabbit were collected and fixed in 10% neutral formalin buffer. Tissues were then processed by paraffin embedding technique and sectioned by microtome (Leica 2135, Germany) at 4 µ thick. Tissues were examined by light microscope and photographed by digital camera (Olympus XC30, Tokyo, Japan).

Results

Histopathological findings

Gp.1, the mammary gland demonstrated normal histological structure with milk secretion in mammary acini in the control group (Fig. 3a).

Gp.2, rabbits inoculated with *M. bovis* exhibited histopathological lesions in different organs in addition to mastitis. The liver of rabbit demonstrated perportal mononuclear leukocytic infiltration and Kupffer cell hyperplasia. In the Lungs, the interstitial tissue and alveolar wall were infiltrated by mononuclear leukocytes together with collapse of some alveoli and dilatation of other forming giant alveoli. In the kidneys, there were proliferation of glomerular cells and glomerular tuft adhesion to Bowman’s capsule. In addition, the renal tubular epitheliums were swollen with closure of tubular lumen (Fig. 4a &b).

In Gp.3, inoculated with *M. bovis* and treated with linospectin antibiotic, there were edema, mononuclear cells infiltration and mild fibroblastic proliferation in the interstitial tissue of the mammary gland. Moreover, some acini were almost devoid of milk secretion and also showed similar lesion to Gp. 2, (Fig. 3b).

Gp.4 infected and treated with antibiotic combination with zinc oxide (ZnO) nanoparticles, there was mild fibroblastic proliferation in the interstitial tissue and little milk secretion in the mammary acini (Fig. 3c & Fig.5, 6a &b).

Discussion

Combining antibiotics with nanoparticles show great promise for treating a wide variety of bacterial and fungal pathogens that are not easily killed by routine antimicrobial agents [20]. Nanoparticles (NPs) have been shown to be a safe and effective alternative therapy.
Fig. 3. a. Gp.2 rabbit inoculated with M. bovis showing normal structure of mammary acini.
b. Gp.3 inoculated with M. bovis and treated with lincopectin antibiotic showing edema and inflammatory cells infiltration in the interstitial tissue of the mammary gland,
C. Gp.4 inoculated with M. bovis and treated with antibiotic combined with Zinc Oxide nanoparticles showing few inflammatory cells infiltration and mild fibroblastic proliferation in the interstitial tissue with little milk secretion in the mammary acini.

Fig. 4. Gp.2, Mastitic cases after infection with M. bovis.

Fig. 5. Gp.4, 3 days after treatment with lincopectin + zinc oxide (ZnO) nanoparticles.
against common infectious agents without driving antibiotic resistance in organisms [21]. Mycoplasma species have been documented as an isolated pathogen from rabbit reproductive tract [22]. M. bovis causing chronic mastitis in dairy has become increasingly difficult to treat due to the inability of current antibiotics to effectively clear infections [23].

Therefore, this study was performed to elucidate the histopathological lesions of M. bovis in rabbits in addition to assessing the efficiency of antibiotic nanoparticles. Recent studies have shown that combining nanoparticles with antibiotics not only reduces the toxicity of both agents towards bacterial cells by decreasing the requirement for high dosages but also enhances their bactericidal properties [24]. Combining antibiotics with nanoparticles also restores their ability to destroy bacteria that have acquired resistance to them. The zinc oxide nanoparticles (ZnO-NPs) have a wide range of antimicrobial activity against various microorganisms, with low toxicity to human cells [25]. It has ability to improve the immune system and prevent biofilm formation. Furthermore, treatment using zinc was approved by the FDA and nowadays Zn is available as a food additive [26].

The Gp.2 infected with M. bovis demonstrated an interstitial mastitis (Fig. 3a& Fig. 4a&b) which resembles the lesions caused by M. canadense[15]. It was reported that M. canadense causes subacute to chronic histopathological lesions with lymphocytic and macrophagocytic cells infiltration and moderate fibroblastic proliferation [15].

In Gp. 3 the use of lincomycin was not effective against the bacteria and mastitis was not alleviated (Fig.3b). Generally mycoplasmas are susceptible to antibiotics that affect protein (tetracycline, macrolides, Lincosamides, phenicols) or nucleic acid synthesis (fluoroquinolones) [27]. However antibiotic resistance sometimes develops against these antibiotics by the organism causing a decrease in the effectiveness of certain antimicrobial agents [28].

In Gp.4, infected with M. bovis and treated with antibiotic combinations of zinc oxide nanoparticles, the histopathological lesions were alleviated in which no inflammatory cells were recorded however the fibroblastic proliferation was still present (Fig.3c). (Fig. 5 & 6 a&b) demonstrated enhancing influence of ZnO nanoparticles on the activity of lincomycin against M. bovis. ZnO-NPs also were causing destructive oxidative stress to bacterial cells and disrupt the metabolic activity of bacterial cells and therefore inhibit their growth [29].

Therefore it can be concluded that the lincomycin – ZnO nanoparticle was effective against M. bovis. Furthermore, nanoparticles tagged with antibiotics have been shown to increase the concentration of antibiotics at the site of bacterium–antibiotic interaction, and to facilitate binding of antibiotics to bacteria.

ZnO-NPs could be formulated in a suitable treatment of mastitis caused by M. bovis in dairy cattle. However, case-controlled and field efficacy studies are needed to evaluate its efficacy and safety.

Acknowledgements: We acknowledge all the stuff in the Animal Reproduction Research Institute

Funding statements: Self funding

Conflicts of interest: The authors declare that no conflict of interest.

References

التغيرات الهستوباثولوجية في أناث الأرانب المصابة بالميكوبلازما بوفس بعد علاجها بجزيئات النانو من أوكسيد الزنك كوسيلة جديدة للعلاج.

أحمد فتحي، عبد السلام الغمامي، هالة فاروق، مروة خطاب، نورى مروة، هالة فاروق المنياوى، منى محمد صبحى، عبد السلام المحمدى، أحمد فتحى

وحدة المناعة - معهد بحوث التناسليات الحيوانية - مركز البحوث الزراعية - القاهرة - مصر.

1. المركز العربي للنانوتكنولوجى - القاهرة - مصر
2. قسم الأمراض التناسلية - معهد بحوث التناسليات الحيوانية - مركز البحوث الزراعية - القاهرة - مصر.
3. قسم الباثولوجى - كلية الطب البيطرى - جامعة القاهرة - القاهرة - مصر.

يتسبب ميكروب الميكوبلازما بوفس فورة في التهاب الضرع شديد الضرر ويؤدي إلى انخفاض حاد في إنتاج الحليب في الأبقار المصابة. وسبب خطير يؤثر على النمو النباتي والبيئي. وربما تؤدي إلى انخفاض حاد في إنتاج الحليب في الأبقار المصابة. وربما تؤدي إلى التهاب الضرع الشديد الضرر ويؤدي إلى انخفاض حاد في إنتاج الحليب في الأبقار المصابة. وربما تؤدي إلى التهاب الضرع الشديد الضرر ويؤدي إلى انخفاض حاد في إنتاج الحليب في الأبقار المصابة.

وتكنولوجيا النانولديها القدرة على أحداث التغييرات في المستقبل القريب بالنظر إلى الوضع الحالي للبحث والتطوير ويمكن أن تكون الأدوية واللقاحات التي تعتمد على تقنية النانو أكثر فاعلية في علاج الأمراض والقضايا عليها أكثر من التقنيات الحالية، وبالتالي تقليل التكلفة.

ويتم استخدام عدوين ثمانية متعددة الإضافة بعد الوضع مباشر. يتم تقسيم أناث الأرانب إلى أربع مجموعات لكل مجموعة مكونة من خمس أناث.

1. مجموعة الأولى. الضابطة السلبية.
2. المجموعة الثانية. تم حقنها بميكروب الميكوبلازما بوفس.
3. المجموعة الثالثة. تم حقنها بميكروب الميكوبلازما بوفس ثم علاجها بمضادات النانوكسيتوكين أثناء 5 أيام.
4. المجموعة الرابعة. تم حقنها بميكروب الميكوبلازما بوفس ثم علاجها بمضادات النانوكسيتوكين + جزيئات النانو مكونة من أوكسيد الزنك بتركيز 8 ميكرون/مللي لمدة 5 أيام.

في نهاية التجربة تم قتل الأرانب وتجميع عينات من النسيج. كانت نتيجة التغييرات الباثولوجية في المجموعة الثانية جيدة في حالة الإصابة بفطيرة الميكوبلازما بوفس.

في المجموعة الثالثة وجدت العديد من التغيرات الباثولوجية في حالة التهاب الضرع الميكوبلازما بوفس.

المجموعة الرابعة كانت هناك تغيرات خفيفة في حالة الإصابة بفطيرة الميكوبلازما بوفس.

خلال التجربة، تم استخدام جزيئات النانو من أوكسيد الزنك كوسيلة جديدة للعلاج.

في نهاية التجربة، تم قتل الأرانب وتجميع عينات من النسيج. كانت نتيجة التغييرات الباثولوجية في المجموعة الثانية جيدة في حالة الإصابة بفطيرة الميكوبلازما بوفس.

المجموعة الثالثة وجدت العديد من التغيرات الباثولوجية في حالة التهاب الضرع الميكوبلازما بوفس.

المجموعة الرابعة كانت هناك تغيرات خفيفة في حالة الإصابة بفطيرة الميكوبلازما بوفس.

خلاصة: نستفيد من استخدام جزيئات النانو من أوكسيد الزنك كوسيلة جديدة للعلاج في حالة التهاب الضرع الميكوبلازما بوفس. وتتمثل في خلاصة: نستفيد من استخدام جزيئات النانو من أوكسيد الزنك كوسيلة جديدة للعلاج في حالة التهاب الضرع الميكوبلازما بوفس.