

Egyptian Journal of Veterinary Sciences

https://ejvs.journals.ekb.eg/

Combating Multidrug-Resistant Avian pathogenic *E. coli*: Virulence Gene Profiling and the Potential of Chitosan Nanoparticles

Abdelmohsen A. Nofal¹, Sherif A. Marouf², Hazem M. Ibrahim³, Azhar G. Shalaby⁴ and Eman Ragab ^{2*}

- ¹ Bacteriology, Damietta Regional Laboratory, Animal Health Research Institute, Agriculture Research Center (ARC), Egypt.
- ² Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Egypt.
- ³ Veterinary Serum and Vaccine Research Institute (VSVRI), Agriculture Research Center (ARC), Cairo, Egypt.
- ⁴ Department of Biotechnology, Central Laboratory for Quality Control of Poultry Production, Agriculture Research Center (ARC), Giza, Egypt.

Abstract

VIAN pathogenic *Escherichia coli* (APEC) is a leading cause of colibacillosis, contributing to significant economic losses in poultry production worldwide. This study aimed to investigate the prevalence of virulence and antimicrobial resistance genes in APEC isolates from different Egyptian governorates in addition evaluation the antimicrobial efficacy of chitosan nanoparticles (CNPs) as a potential alternative treatment. A total of 180 visceral organ samples were collected from broiler, layer, and breeder chickens suspected of colibacillosis; 158 (88%) yielded bacterial isolates, of which 85 (54%) were confirmed as *E. coli* biochemically, and 69 (81%) were serotyped. Antimicrobial susceptibility testing revealed high levels of antimicrobial resistance, with complete resistance to streptomycin and nalidixic acid, and notable resistance to ampicillin, tetracycline, and doxycycline. PCR detected three virulence genes (*papC*, *iss*, *iutA*) and three resistance genes (*blaCTX*-M, qnrA, and sul1), with sul1 present in all isolates. CNPs synthesized via ionic gelation showed a mean particle size of 56.6 nm and demonstrated effective antibacterial activity at a minimum inhibitory concentration of 50 mg/ml. These findings highlight the alarming prevalence of MDR APEC in Egyptian poultry and suggest that CNPs hold promise as a sustainable antimicrobial alternative.

Keywords: E. coli, antimicrobial resistance, virulence associated genes, PCR, Chitosan nanoparticles.

Introduction

Avian colibacillosis, caused by avian pathogenic *Escherichia coli* (APEC), is one of the most economically significant bacterial diseases affecting poultry production worldwide. It leads to high mortality rates, decreased productivity, increased condemnation of carcasses at slaughter, and substantial financial losses to the poultry industry [1, 2]. According to Guabiraba and Schouler [3], *E. coli* is a commensal bacterium of the gastrointestinal tract (GIT), as well as the pharynx and trachea of humans, animals, and birds. Avian pathogenic *Escherichia coli* (APEC) is an extra-intestinal pathogenic

Escherichia coli (ExPEC) that can cause local or systemic infections in poultry, such as chickens, turkeys, ducks, and many other avian species [4]. APEC strains are typically associated with systemic infections, including pericarditis, perihepatitis, airsacculitis, and septicemia, particularly in broilers, layers, and breeders under conditions of stress or immunosuppression [5]. Colibacillosis necessitates predisposing conditions including Mycoplasma gallisepticum infections, weakened mucosal barriers, immunosuppression from stressors (viruses and vaccines), and inadequate ventilation and poor hygiene in hatcheries and chicken barns [6]. The pathogenicity of APEC is largely attributed to the

*Corresponding authors: Eman Ragab Mohamed, E-mail: eman_ragab2008@cu.edu.eg, Tel.: +2011 15108408 (Received 06 August 2025, accepted 06 October 2025)

DOI: 10.21608/ejvs.2025.411634.3025

presence of multiple virulence factors that facilitate adhesion, invasion, immune evasion, and nutrient acquisition. The virulence genes commonly associated with APEC include papC (P fimbriae assembly), *iss* (increased serum survival), and *iutA* (aerobactin receptor). The presence and expression of these genes are essential for the successful colonization and infection of host tissues, making them important targets for molecular identification and epidemiological studies [7-9].

In parallel with their virulence, APEC strains are increasingly exhibiting multidrug resistance (MDR), largely due to the misuse and overuse of antibiotics in the poultry industry. Resistance genes such as, blaCTX-M, qnrA, and sul1 are frequently detected in APEC isolates, conferring resistance to extendedspectrum β-lactams, quinolones, and sulfonamides, respectively [10,11]. The emergence dissemination of such MDR strains pose a significant threat not only to animal health but also to public health, considering the zoonotic potential of APEC and the risk of gene transfer to human-pathogenic E. coli strains [12].

According to Ibrahim et al [13], the presence of resistance-encoding genes within plasmids or chromosomal genetic material causes antibiotic resistance with high complexity. These genes are found on mobile genetics elements which facilitate their quick spread among ExPEC strains. Additionally, human contamination may be caused by animal reservoirs, or the spread of commensal including antibiotic-resistant bacteria. bacteria, through contaminated poultry food [14]. Although modern antibacterial drugs are available, bacterial infections remain a significant global health concern due to the rapid rise of multidrug-resistant strains. Nanoparticles have emerged as a promising and safe alternative to conventional antibiotics [15]. Therefore, there is an urgent need to explore alternative strategies to conventional antibiotics.

Among the most promising alternatives are nanotechnology-based antimicrobials, such as chitosan nanoparticles (CNPs). Chitosan, a natural polysaccharide derived from chitin, has attracted increasing attention due to its biocompatibility, biodegradability, and broad-spectrum antimicrobial activity [16]. When converted into nanoparticulate form, chitosan exhibits enhanced interaction with bacterial membranes, leading to increased permeability, leakage of intracellular contents, and ultimately, bacterial cell death [17,18].

Therefore, the current study was designed to investigate the prevalence of virulence and antimicrobial resistance genes among APEC isolates obtained from poultry farms across different Egyptian governorates. Furthermore, it aims to evaluate the antibacterial efficacy of chitosan nanoparticles against multidrug-resistant APEC

isolates, providing insights into their potential application as a novel bio-based antimicrobial agent for controlling colibacillosis in poultry.

Material and Methods

Sample collection and bacterial isolation and identification

A total of 180 recently deceased broiler, layer, and breeder chickens suspected of colibacillosis were randomly selected from various commercial poultry farms in three Egyptian governorates (Damietta, El Dakahlia, and Port Said). Visceral organs including the liver, lungs, air sacs, heart, and spleen were aseptically collected from each bird microbiological analysis. Approximately 25 grams of tissue from each organ were pooled and pre-enriched in MacConkey broth. After incubation, 1 mL of the broth culture was streaked onto Eosin Methylene Blue (EMB) agar and MacConkey agar plates. The plates were incubated aerobically at 37°C for 24 hours. Isolated colonies were preserved in 20% (v/v) glycerol broth and stored at -70°C for subsequent analyses. A single representative colony from each sample was selected for further characterization. Escherichia coli isolates were initially identified based on morphological characteristics (e.g., Gram staining and motility testing) and further confirmed by standard biochemical tests, following the methodology described by [19]. For serological identification, isolates were examined using rapid diagnostic E. coli antisera sets (DENKA SEIKEN Co., Japan) to determine their enteropathogenic serotypes, as outlined by [20]

Antimicrobial sensitivity testing:

The antimicrobial susceptibility of the Escherichia coli isolates was assessed using the Kirby-Bauer disk diffusion method on Mueller-Hinton agar, as recommended by the Clinical and Laboratory Standards Institute [21]. The methodology followed the standard procedures described by [22], with minor modifications. Briefly, bacterial suspensions were prepared from overnight cultures and adjusted to the 0.5 McFarland standard (equivalent to approximately 1 \times 10 8 CFU/mL). Sterile cotton swabs were used to evenly inoculate the surface of Mueller-Hinton agar plates. After inoculation, commercially prepared antibiotic-impregnated discs (Oxoid Ltd., Basingstoke, Hampshire, UK) were placed on the agar surface, and the plates were incubated aerobically at 37°C for 18–24 hours. Zones of inhibition were measured in millimeters and interpreted as susceptible, intermediate, or resistant according to CLSI. Each isolate was tested against a panel of sixteen antibiotics representing various antimicrobial classes, including β-lactams, aminoglycosides, tetracyclines, fluoroquinolones, sulfonamides, and polymyxins. The antibiotics used and their respective disc potencies were as follows(Amikacin (AK) (30 µg/disc), Ampicillin (AM) (10

μg/disc), Amoxicillin/clavulanic acid (AMC) (30 μg/disc), Cefotaxime (CF) (30 μg/disc), Ceftazidime (Z) (10 μg/disc), Colistin (25 μg/disc), Doxycycline (DO) (30 μg/disc), Florfenicol (F) (30 μg/disc), Kanamycin (30 μg/disc), Gentamicin (10 μg/disc), Nalidixic acid (NA) (30 μg/disc), Streptomycin (S) (10 μg/disc), Sulfamethoxazole (SXT) (25 μg/disc), and Tetracycline(T)(30μg/disc).

Molecular identification of virulence genes and antimicrobial genes by PCR

Rapid DNA extraction kits were used to extract bacterial DNA in accordance with the QIAamp DNA Mini Kit manufacturer's procedure (Catalogue No. 51304). The genotyping was determined by PCR. E. coli isolates were evaluated through PCR targeting three genes of virulence genes as Adhesins (papC) and iron acquisition/uptake systems (Iss and iutA) and three genes of antimicrobial resistance genes as (qnrA, blaCTX-M and Sul1). Six pairs of primers were supplied from metabion (Germany) or Biobasic (Canada). They have specific sequence and amplify specific products as shown in (Table 1).

The PCR reactions were carried out in a total volume of 25 μ L, containing 12.5 μ L of 2× PCR Master Mix, 0.5 μ M of each primer, and 2 μ L of template DNA. The PCR cycling conditions were as follows: initial denaturation at 95°C for 5 minutes, followed by 35 cycles of denaturation at 95°C for 30 seconds, annealing at 58°C for 30 seconds, and extension at 72°C for 45 seconds, with a final extension at 72°C for 7 minutes. PCR products were analyzed by electrophoresis on a 1.5% agarose gel stained with ethidium bromide and visualized under UV illumination.

Preparation of the Chitosan Nanopartcles (CNPs):

CNPs were synthesized by the ionotropicgelation method depending on electrostatic interaction between positive charged amino groups of chitosan and negatively charged groups of TPP (tripolyphosphate). Chitosan solution was made at 3 g dissolved in 600 ml of acidified distilled water (DW) with 6 ml Glacial acetic acid by vigorous stirring until a transparent solution was observed. The pH of the solution was adjusted up to 4.5-4.8 by using NaOH then the solution was filtered to remove all undissolved particles. TPP was made at 200 mg/200 ml DW and added dropwise at a consistent rate using titration pipette at the rate of 2 ml/min under continuous stirring for 2 h at room temperature then the mixture was sonicated for 10 mins [23]. The solution was centrifuged at 12000 rpm at 4 °C/15 min twice with washing. The supernatant was discarded, and the sediment dialyzed with DW then lyophilized and well ground to be used for further characterization. Average particle size and surface charge were determined using Zetasizer (Micotrac, wave, USA).

Determination of the Minimum Inhibitory Concentration (MIC) of Chitosan Nanoparticles (CNPs)

The minimum inhibitory concentration (MIC) of chitosan nanoparticles (CNPs) against Escherichia coli isolates was determined using a broth microdilution assay, following the method described by [24] with minor modifications. The assay was performed in sterile 96-well microtiter plates. Bacterial suspensions of E. coli were prepared from overnight cultures in tryptic soy broth and adjusted to logarithmic-phase growth (10⁸ CFU/mL) using a spectrophotometer at 600 nm to match the 0.5 McFarland standard. A series of two-fold serial dilutions of CNPs were prepared in sterile Mueller-Hinton broth, covering a concentration range suitable for expected antimicrobial activity. To each well of the microtiter plate, 100 µL of CNP dilution was added, followed by 100 µL of bacterial suspension, yielding a final volume of 200 μL per well. Positive control wells (containing bacteria without CNPs) and negative control wells (media only, without bacteria or CNPs) were included. The plates were then incubated aerobically at 37°C for 24 hours. Following incubation, 10 µL of a 2.5 mg/mL tetrazolium salt solution (e.g., MTT or INT) was added to each well and incubated for an additional 4 hours at 37°C. This colorimetric assay allowed for visual assessment of bacterial viability: metabolically active (viable) cells reduce the tetrazolium salt to form a blue/purple-colored formazan, while inhibited bacterial growth results in colorless or pale wells. The MIC was defined as the lowest concentration of CNPs that completely inhibited visible bacterial growth, as indicated by the absence of color change. All tests were performed in duplicate, and results were recorded independently by two observers to ensure accuracy. For quality control, an E. coli ATCC 25922 strain was included as a reference organism.

Results

Isolation and phenotypic characterization of isolates:

Out of 180 collected samples, 158 (88%) were positive for E. coli using standard culture techniques. Initial identification of isolates was based on microscopic morphology and motility testing. Gram staining revealed medium-sized, Gram-negative, uniformly pigmented coccobacilli, consistent with the morphological characteristics of Escherichia coli [25]. Motility was confirmed by the presence of an oval-shaped diffused growth pattern extending from the stab line, indicating active flagellar movement. For preliminary culture-based differentiation, isolates were grown on MacConkey agar, where they produced characteristic pink to red colonies, indicative of lactose fermentation (Fig. 1.A). When sub-cultured on Eosin Methylene Blue (EMB) agar, colonies exhibited the typical metallic green sheen, a

hallmark trait of strong lactose-fermenting *E. coli* strains (Fig. 1.B).

Further biochemical identification performed using the [19] system. Among the 158 presumptive isolates, 85 samples (54%) exhibited biochemical profiles consistent with E. coli. The isolates tested positive for indole production, methyl red reaction, nitrate reduction, and ONPG (ortho-nitrophenyl- β -galactoside) confirming their β-galactosidase enzyme activity. Conversely, the isolates were negative for the Voges-Proskauer test, citrate utilization, urease activity, H2S production, and gelatin liquefaction, supports differentiation from other which Enterobacteriaceae. Taken together, the cultural appearance, Gram stain morphology, motility, and biochemical characteristics confirmed the identity of the isolates as Escherichia coli.

Serological identification:

Out of the 85 biochemically confirmed E. coli isolates, 69 samples (81%) were successfully identified through serological typing. Among these, 12 isolates were classified as O78 (enterotoxigenic E. coli - ETEC), while 10 isolates belonged to O91:H21 (enterohemorrhagic E. coli - EHEC). Seven isolates were identified as O128:H2 (ETEC), and six isolates as O1:H7 (enteropathogenic E. coli - EPEC). Additionally, five isolates were typed as O26:H11 (EHEC), O2:H6 (EPEC), and O146:H21 (EPEC), respectively. Other identified serotypes included O55:H7 (EHEC) with four isolates, O121:H7 (EPEC) with three isolates, and O159 (Enteroinvasive E. coli - EIEC) with two isolates. A further two isolates each were classified as O119:H6 (EPEC), O17:H18 (EPEC), O153:H2 (EPEC), and O127:H6 (EPEC). Finally, single isolates were identified as O124 (EIEC) and O103:H2 (EHEC) as shown in (Fig. 2).

These findings reflect the diversity of *E. coli* pathotypes present among the isolated strains, with notable representation from ETEC, EHEC, EPEC, and EIEC serogroups.

Antimicrobial sensitivity Profile of E. coli Isolates

The antimicrobial susceptibility of the 69 serotyped *E. coli* isolates was assessed using the disc diffusion method. The isolates demonstrated a wide range of resistance patterns across the tested antimicrobial agents. Complete resistance (100%) was observed against streptomycin, indicating its ineffectiveness against all tested isolates. High levels of resistance were also recorded for nalidixic acid (92.7%), ampicillin (76.8%), and tetracycline (65.2%). A similarly elevated resistance rate was observed for doxycycline (60.9%). Moderate resistance was detected against kanamycin (47.8%), ceftazidime (36.2%), amoxicillin-clavulanic acid (30.4%), and neomycin (29.0%). Resistance to

sulphamethoxazole-trimethoprim (SXT) was 26.1%, while cefotaxime showed a relatively lower resistance rate of 20.3%. In contrast, low resistance levels were observed for florfenicol (13.0%), colistin (8.7%), gentamicin (5.8%), and amikacin (4.4%). The highest susceptibility was recorded for meropenem, with 97.1% of isolates sensitive to the antibiotic and only 1.5% showing resistance. Overall, isolates exhibited multidrug particularly against several first-line and commonly used antibiotics, while maintaining susceptibility to meropenem, amikacin, and gentamicin—suggesting these as potentially effective treatment options against the resistant strains as shown in (Table 2 and Fig. 3). The average number of Multidrug resistance (MDR) in our study was (0.386).

Molecular identification of virulence genes and antimicrobial genes by PCR:

All 69 *E. coli* isolates tested positive by PCR for the presence of three virulence-associated genes: *papC* (adhesin), **iss**, and *iutA* (iron acquisition and uptake systems) (Fig. 4). All 69 *E. coli isolates were screened by PCR for the presence of three antibiotic resistance genes: (BlaCTX-M) (β-lactamase encoding gene), qnrA (plasmid-mediated quinolone resistance gene), and sul1 (sulfonamide resistance gene) (Fig. 5). Out of the tested isolates, 24 samples (35%) were positive for all three resistance genes.*

Use of Chitosan Nanoparticles (CNPs) as a Potential Antimicrobial Agent against E. coli

Chitosan nanoparticles (CNPs) were evaluated for their antimicrobial activity against *Escherichia coli*. The synthesized nanoparticles had an average particle size of 56.6 nm, a polydispersity index (PDI) of 0.4, indicating moderate size uniformity, and a positive surface charge (zeta potential) of +32.3 mV, which enhances interaction with the negatively charged bacterial cell membranes. The minimum concentration of CNPs that exhibited a measurable antibacterial effect against *E. coli* was 50 mg/mL, demonstrating their potential as an effective nanobased antimicrobial agent.

Discussion

The increasing prevalence of multidrug-resistant (MDR) *Escherichia coli* in poultry poses a critical concern for both animal health and public safety, particularly due to the zoonotic potential of avian pathogenic *E. coli* (APEC) strains [12]. In the present study, *E. coli* was isolated from 88% of colibacillosis-suspected birds, which is consistent with previous reports from Egypt [26-28]. Such high prevalence suggests poor biosecurity measures and excessive antibiotic use in poultry farms. Variations in isolation rates across studies [29,30] may be attributed to differences in sampling strategies, regional management practices, and laboratory

methodologies. Serotyping revealed dominance of O78, O91, O128, O1, and O2 strains, reflecting the global distribution of highly virulent APEC serotypes [31-33]. Notably, the detection of multiple pathotypes including ETEC, EHEC, EPEC, and EIEC underscores the genetic diversity and adaptability of APEC strains. This observation is supported by studies demonstrating the emergence of novel serotypes across different Egyptian regions [34,35].

Because of the wide use of antibiotics in the food animal sector, little attention has been paid to how antibiotic use in farm animals contributes to the problem of antibiotic resistance, especially in developing countries [36,37]. The antimicrobial susceptibility profiles of isolates were alarming. All isolates were resistant to streptomycin, with high resistance rates also reported for nalidixic acid (92.7%), ampicillin (76.8%), tetracycline (65.2%), and doxycycline (60.9%). These findings reflect the widespread misuse of antibiotics in poultry and confirm similar trends observed in local and international studies [38-41]. Although resistance was noted for meropenem and amikacin, the potential transmission of resistance genes from animal to human strains through food remains a major concern [42,43].

All 69 isolates harbored the virulence genes *papC*, *iss*, and *iutA*, essential for colonization, iron acquisition, and immune evasion [7,8]. Their universal presence confirms the pathogenic potential of the isolates and aligns with previous Egyptian reports [43,44]. The co-occurrence of virulence and resistance genes within the same strains emphasizes the selective advantage and increased fitness of MDR APEC, which are often propagated through horizontal gene transfer [13,45].

The high prevalence of resistance genes sul1 (100%), qnrA (74%), and blaCTX-M (48%) confirms the presence of mobile resistance determinants conferring sulfonamide, quinolone, and β -lactam resistance. These findings are consistent with reports from [46-48], and they illustrate the increasing dissemination of extended-spectrum β -lactamase (ESBL) genes, especially blaCTX-M, among $E.\ coli$ strains [49,50].

Although bacterial virulence and antibiotic resistance have been thoroughly investigated separately, little is known about their interaction. Our findings demonstrated the strong correlation between antibiotic resistance and virulence gene presence in resistant strains; MDR E. coli serovars have at least two virulence and antibiotic resistance genes. Therefore, in order to overcome the MDR problem,

the world has recently resorted to using strict hygienic measures in conjunction with the use of safe antibiotic alternatives. These alternatives include the use of natural, safe products like hyperimmune serum [51], herbal extracts, organic acids, essential oils, prebiotics, probiotics, symbiotics, postbiotics, and nano-preparations to improve the avian gut microbiome in order to compete with pathogens and ultimately improve birds' [52].

Given the limitations of conventional antibiotic therapies, this study evaluated chitosan nanoparticles (CNPs) as a natural antimicrobial alternative. The synthesized CNPs exhibited favorable physicochemical properties small particle size (~56.6 nm), moderate polydispersity, and high positive zeta potential conducive to strong interactions with bacterial membranes [17,53]. The observed MIC of 50 mg/mL aligns with prior studies demonstrating the antimicrobial efficacy of CNPs against Gramnegative pathogens [23,54].

Chitosan's antimicrobial activity involves multiple mechanisms, including disruption of bacterial membranes, chelation of essential metals, and interference with nutrient uptake and DNA replication [55]. Its biodegradability, safety profile, and ability to combat resistant strains make it a viable candidate for incorporation into poultry disease management strategies, particularly amid growing restrictions on antibiotic usage.

Conclusion

The widespread distribution of MDR APEC harbouring both virulence and resistance genes in Egyptian poultry highlights an urgent need for stricter antibiotic usage, enhanced biosecurity, and adoption of safe antimicrobial alternatives. CNPs hold significant potential as a novel bio-based therapeutic, which need further in vivo investigation and integration into national poultry health programs.

Acknowledgments

Not applicable.

Funding statement

This study didn't receive any funding support

Declaration of Conflict of Interest

The authors declare that there is no conflict of interest.

Ethical of approval

The study was following the Institutional Animal Care and Use Committee at the Faculty of Veterinary Medicine, Cairo University, Giza, Egypt. The ethics approval number (Vet CU 290720251233).

TABLE 1. Oligonucleotide primers sequences of virulence associated genes and antimicrobial resistance genes.

Gene	Primer sequence	Length of amplified	Reference	
	(5'-3')	product		
papC	TGATATCACGCAGTCAGTAGC	501 bp	[56]	
	CCGGCCATATTCACATAA			
Iss	ATGTTATTTCTGCCGCTCTG	266 bp	[57]	
	CTATTGTGAGCAATATACCC			
iutA	GGCTGGACATGGGAACTGG	300 bp		
	CGTCGGGAACGGGTAGAATCG			
qnrA	ATTTCTCACGCCAGGATTTG	516 bp	[58]	
	GATCGGCAAAGGTTAGGTCA			
blaCTX-M	ATGTGCAGYACCAGTAARGTKATGGC	593 bp	[59]	
	TGGGTRAARTARGTSACCAGAAYCAGCGG			
sul1	CGGCGTGGGCTACCTGAACG	433 bp	[60]	
	GCCGATCGCGTGAAGTTCCG			

TABLE 2. Antimicrobial resistance profile of avian pathogenic $\it E.~coli$ isolates.

And make a land a series	S		I		R	
Antimicrobial agent	NO	%	NO	%	NO	0/0
Streptomycin (S)	-	-	-	-	69	100
Nalidixic acid (NA)	2	2.9	3	4.4	64	92.7
Ampicillin (AM)	11	15.9	5	7.3	53	76.8
Tetracycline (T)	19	27.5	5	7.3	45	65.2
Doxycycline (DO)	25	36.2	2	2.9	42	60.9
Kanamycin (K)	32	46.4	4	5.8	33	47.8
Ceftazidime (Z)	43	62.3	1	1.5	25	36.2
Amoxycillin-Clavulanic acid (AMC)	45	65.2	3	4.4	21	30.4
Neomycin (N)	47	68.1	2	2.9	20	29.0
Sulphamethoxazol (SXT)	47	68.1	4	5.8	18	26.1
Cefotaxime (CF)	52	75.4	3	4.4	14	20.3
Florfenicol (F)	56	81.2	4	5.8	9	13.0
Colistin (CO)	61	88.4	2	2.9	6	8.7
Gentamicin (G)	65	94.2	-	-	4	5.8
Amikacin (AK)	65	94.2	1	1.5	3	4.4
Meropenem (M)	67	97.1	1	1.5	1	1.5

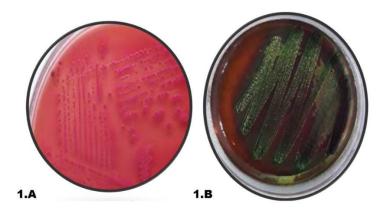


Fig.1. A: show colony of *E.coli* on MacConky agar that typically appear as bright pink or red, smooth, and circular B: show colony of *E.coli* on (EMB) that typically appear dark, often blue-black, colonies with a metallic green sheen.

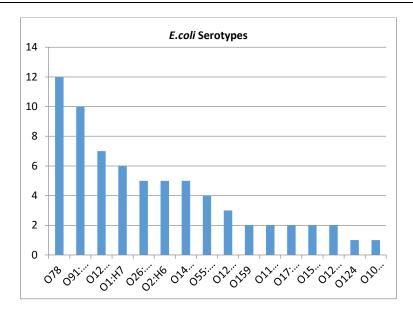


Fig. 2. E.coli isolates serotypes identification according to (MacFaddin, 2000)

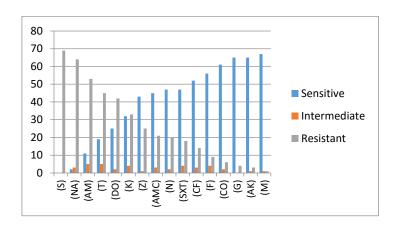
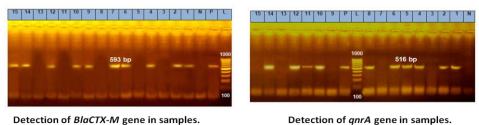
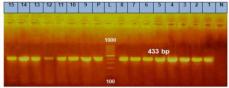
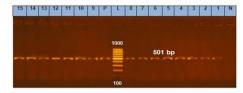
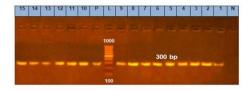




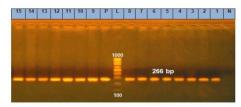
Fig. 3. Sensitivity and resistance to different antimicrobial agents.


Positive samples produce band 593 bp. Pos

Positive samples produce band 516 bp.



Detection of *Sul1* gene in samples. Positive samples produce band 433 bp


Fig. 4. PCR bands for (BlaCTX-M, qnrA and Sul1 genes) Antimicrobial resistance genes in avian pathogenic E.coli

Detection of *papC* gene in samples. Positive samples produce band 501 bp.

Detection of *iutA* gene in samples. Positive samples produce band 300 bp.

Detection of *iss* gene in samples.

Positive samples produce band 266 bp

Fig. 5. PCR bands for (papC,iutA and iss genes) virulence associated genes in avian pathogenic E.coli.

References

- Nolan, L. K., Barnes, H. J., Vaillancourt, J. P., Abdul-Aziz, T. and Logue, C.M. Colibacillosis. *Diseases of Poultry*, 751-805 (2013).
- Kemmett, K., Williams, N.J., Chaloner, G., Humphrey, S., Wigley, P., and Humphrey, T. The contribution of systemic *Escherichia coli* infection to the early mortalities of commercial broiler chickens. *Avian Pathology*, 43(1), 37-42 (2014).
- Guabiraba, R. and Schouler, C. Avian colibacillosis: still many black holes. FEMS Microbiology Letters, 362(15), fnv118 (2015).
- Ibrahim, A.H., El Khashab, E., Shakal, M. and Morsy, E.A. Unveiling antibiotic resistance, virulence, and molecular detection of enteric bacterial infections in broilers: A Study in Egypt. Egyptian Journal of Veterinary Sciences, 55(6), 1537-1551(2024).
- Dziva, F. and Stevens, M.P. Colibacillosis in poultry: unravelling the molecular basis of virulence of avian pathogenic Escherichia coli in their natural hosts. Avian Pathology, 37(4), 355-366 (2008).
- Waliaula, P.K., Kiarie, E.G., and Diarra, M.S. Predisposition factors and control strategies of avian pathogenic Escherichia coli in laying hens. Frontiers in Veterinary Science, 11, 1474549 (2024).
- Johnson, T.J., Kariyawasam, S., Wannemuehler, Y., Mangiamele, P., Johnson, S.J., Doetkott, C., and Nolan, L. K. The genome sequence of avian pathogenic *Escherichia coli* strain O1: K1: H7 shares strong similarities with human extraintestinal pathogenic *E. coli* genomes. *Journal of Bacteriology*, 189(8), 3228-3236 (2007).

- Rodriguez-Siek, K.E., Giddings, C.W., Doetkott, C., Johnson, T.J. and Nolan L.K. Characterizing the APEC pathotype. *Vet. Res.*, 36, 241-256 (2005).
- Ewers, C., Janßen, T., Kießling, S., Philipp, H.C., and Wieler, L.H. Molecular epidemiology of avian pathogenic *Escherichia coli* (APEC) isolated from colisepticemia in poultry. *Veterinary Microbiology*, 104 (1-2), 91-101. (2004).
- 10. El-Tawab, A.A.A., Rizk, A.M., Homouda, S.N., El-Mougy, E.E. and Gouda, A.M. Molecular characterization and antimicrobial resistance gene of *E. coli* and Salmonella Kentucky isolated from Turkeys in Egypt. *Adv. Anim. Vet. Sci.*, 8(7), 742-747. (2020).
- Algammal, A.M., El-Tarabili, R.M., Alfifi, K.J., Al-Otaibi, A.S., Hashem, M.E.A., El-Maghraby, M.M. and Mahmoud, A.E. Virulence determinant and antimicrobial resistance traits of Emerging MDR Shiga toxigenic *E. coli* in diarrheic dogs. *AMB Express*, 12 (1), 34. (2022).
- 12. Mehat, J.W., van Vliet, A.H. and La Ragione, R.M. The Avian Pathogenic *Escherichia coli* (APEC) pathotype is comprised of multiple distinct, independent genotypes. *Avian Pathology*, **50**(5), 402-416. (2021).
- 13. Ibrahim, R.A., Cryer, T.L., Lafi, S.Q., Basha, E.A., Good, L. and Tarazi, Y.H. Identification of Escherichia coli from broiler chickens in Jordan, their antimicrobial resistance, gene characterization and the associated risk factors. BMC Research, 15, Veterinary 1-16.(2019).
- 14. Hannah, E.L., Johnson, J.R., Angulo, F., Haddadin, B., Williamson, J. and Samore, M.H. Molecular analysis of antimicrobial-susceptible and-resistant *Escherichia coli* from retail meats and human stool and clinical specimens in a rural community setting. *Foodborne Pathogens and Disease*, **6**(3), 285-295 (2009).
- 15. Khalil, O.A., Enbaawy, M.I., Salah, T., Mahmoud, H., and Ragab, E. In vitro investigation of the antibacterial

- effect of silver nanoparticles on ESBL-producing *E. coli* and *Klebsiella* spp. isolated from Pet animals. *World's Veterinary Journal*, **10**(4), 514-524. (2020).
- Tuchilus, 16. Confederat, L.G., C.G.. Dragan, M., Sha'at, M. and Dragostin, O.M. Preparation and antimicrobial activity of and chitosan its derivatives: Α concise review. Molecules, 26(12), 3694 (2021).
- Goy, R.C., Britto, D.D., and Assis, O.B. A review of the antimicrobial activity of chitosan. *Polímeros*, 19, 241-247 (2009).
- Qi, L., Xu, Z., Jiang, X., Hu, C., and Zou, X. Preparation and antibacterial activity of chitosan nanoparticles. *Carbohydrate Research*, 339(16), 2693-2700 (2004).
- MacFaddin, J.F.: Biochemical tests for identification medical bacteria. Warery Press Inc, Baltimore, Md. 21202 USA.5(2000)
- 20. Lee, K., Iguchi, A., Terano, C., Hataya, H., Isobe, J., Seto, K. and EHEC Working Group in Japan. Combined usage of serodiagnosis and O antigen typing to isolate Shiga toxin-producing Escherichia coli O76: H7 from a hemolytic uremic syndrome case and genomic insights from the isolate. *Microbiology Spectrum*, 12(1), e02355-23. (2024).
- National Committee for Clinical Laboratory Standards "NCCLS": Performance standards for antimicrobial susceptibility testing Supplement M100-S11. Villanova, PA, USA. (2001)
- 22. Mary, C. and Usha, M. Incidences of multi-drug resistance *Escherichia coli* isolates in Panipuri sold in Bangalore. Inter. *Food Res. J.*, **20** (2), 1007-1009. (2013)
- 23. Eman, M., Khoris, E.A. and Kassem, S. Assessment the efficacy of some various treatment methods, in vitro and in vivo, against Aeromonas hydrophila infection in fish with regard to side effects and residues. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 253, 109246. (2022)
- 24. Raquel Requena, María Vargas and Amparo Chiralt. Study of the potential synergistic antibacterial activity of essential oil components using the thiazolyl blue tetrazolium bromide (MTT) assay, LWT, 101, Pages 183-190, (2019) https://doi.org/10.1016/j.lwt.2018.10.093.
- 25. ISO (International Standards Organization), 6887-1: Microbiology of food and animal feeding stuffs: Preparation of initial test sample, suspension and dilutions decimal for microbiological examination, International Standards Organization, Geneva. (2013)
- 26. Eid S.E.A. and Erfan A.M. Characterization of *E. coli* associated with high mortality of poultry flocks. *Assiut Vet. Med. J.*, **59**, 51-61 (2013).
- 27. Peer, F.U., Ansari, M.M., Gani, I.A. and Willayat, M. M. Serotyping and antibiotic sensitivity patterns of Escherichia coli isolates obtained from broiler chicks in Kashmir Valley, India. Advances in Animal and Veterinary Sciences, 1(2), 75-76 (2013).

- 28. Mahmud, S., Nazmul, K.H.M., Nazir, H. and Tanvir, R.M. Prevalence and molecular detection of fluoroquinolone-resistant genes (qnrA and qnrS) in Escherichia coli isolated from healthy broiler chickens. *Veterinary World*, 11(12), 1720-1724 (2018).
- Saidi B., Mafirakureva P. and Mbanga J. Antimicrobial resistance of *E. coli* isolated from chickens with colibacillosis in and around Harare, Zimbabwe. *Avian Dis.*, 57, 152-154 (2013).
- 30. Ammar, A.M., Abd El-Hamid, M.I., Eid, S.E. and El Oksh, A.S. Insights into antimicrobial resistance and virulence genes of emergent multidrug resistant avian pathogenic Escherichia coli in Egypt: How closely related are they. *Rev. Med. Vet.*, 166 (9-10), 304-314. (2015).
- Hassanen, E.I., Morsy, E.A., Hussien, A.M., Farroh, K.Y. and Ali, M.E. Comparative assessment of the bactericidal effect of nanoparticles of copper oxide, silver, and chitosan-silver against *Escherichia coli* infection in broilers. *Biosci. Rep.*, 41,(1-16) BSR2020409 (2021).
- 32. Younis, G., Awad, A. and Mohamed, N. Phenotypic and genotypic characterization of antimicrobial susceptibility of avian pathogenic *Escherichia coli* isolated from broiler chickens. *Veterinary World*, **10**(10), 1167-1172 (2017).
- 33. Ellakany, H., Elhamid, H., Mostafa, N., Elbestawy, A. and Gado, A. Isolation, serotyping, pathogenicity and antibiotic sensitivity testing of *Escherichia coli* from broiler chickens in Egypt. *Alexandria Journal of Veterinary Sciences*, 61(2), 45-45 (2019).
- 34. Amer, M.M., Mekky, H.M., Amer, A.M. and Fedawy, H.S. Antimicrobial resistance genes in pathogenic Escherichia coli isolated from diseased broiler chickens in Egypt and their relationship with the phenotypic resistance characteristics. *Veterinary World*, 11(8), 1082-1088 (2018).
- 35. Shah, S.A., Mir, M.S., Kamil, S.A., Shafi, M., Rather, M.A., Khan, A.A., Wani, Z.A., Adil, S., Alqahtani, F.M., Alhomrani, M., and Wani, M. Serogroup prevalence, virulence profile and antibiotic resistance of avian pathogenic *Escherichia coli* isolated from broiler chicken. *Vet. Sci.*, 12, 592 (2025).
- 36. Burow, E., Simoneit, C., Tenhagen, B.A. and Käsbohrer, A. Oral antimicrobials increase antimicrobial resistance in porcine *E. coli*—A systematic review. *Preventive Veterinary Medicine*, **113**(4), 364-375 (2014).
- 37. Hamed, B.M., Elenbaawy, M.I., Mahmoud, H. and Ragab, E. Investigation of antibiotic resistance pattern and virulence determinants in avian pathogenic *Escherichia coli* isolated from broiler chickens in Egypt. *World's Veterinary Journal*, **13**(1), 85-94 (2023).
- Zhao, S., Maurerb, J.J., Hubert, S., Villena, J.F.D., Dermott, P.F.M., Meng, J., Ayersa, S., English, L. and White, D.G. Antimicrobial susceptibility and molecular characterization of avian pathogenic *Escherichia coli* isolates. *Veterinary Microbiology*, 107(3-4), 215-224 (2005).

- 39. Brătfelan, D.O., Tabaran, A., Colobatiu, L., Mihaiu, R. and Mihaiu, M. Prevalence and antimicrobial resistance of *Escherichia coli* isolates from chicken meat in Romania. *Animals*, **13**(22), 3488 (2022).
- Halfaoui, Z., Menoueri, N.M. and Bendali, L.M. Serogrouping and antibiotic resistance of *Escherichia coli* isolated from broiler chicken with colibacillosis in center of Algeria. *Veterinary World*, **10**(7), 830 (2017).
- 41. Abd El Tawab, A.A., Ammar, A.M., Nasef S.A. and Reda, R.M. Antibacterial resistance and resistance gene detriments of *E. coli* isolated from chicken. *Benha Veterinary Medicl. Journal*, **28**(2), 231-240 (2014).
- 42. WHO: World Health organization. Department of communicable diseases surveillance and response (2002).
- Ahmed, S.A.M., Ahmed, I.A., Osman, N. and El-Hamd, D.M. Problem of *Escherichia coli* infection in broilers in Qena province. *Assiut Veterinary Medical Journal*, 63(153), 252-264 (2017).
- 44. Abd El-Tawab, A.A., El-Hofy, F.I., Alekhnawy, K.I., Talaie, A.T. and Ahmed, A. Insights into virulence and antimicrobial resistance plasmid associated genes of ESBL *Escherichia coli* associated with arthritis in chickens in Egypt. *International Journal of Advanced Research*, 7(1), 174-182 (2018).
- 45. Ali, A., Abd El-Mawgoud, I.A., Dahshan, M.A.H., EL-Sawah, A.A. and Nasef, A.S. *Escherichia coli* in broiler chickens in Egypt, its virulence traits and vaccination as an intervention strategy. *Novel Research in Microbiology Journal*, **3**(4), 415-427 (2019).
- 46. Momtaz, H., Rahimi, E. and Moshkelani, S. Molecular detection of antimicrobial resistance genes in *E. coli* isolated from slaughtered commercial chickens in Iran. *Vet. Med. (Praha)*, **57**(4),193–197(2012).
- 47. Parajuli, N.P., Maharjan, P., Joshi, G. and Khanal, P.R. Emerging perils of extended spectrum β-lactamase producing Enterobacteriaceae clinical isolates in a teaching hospital of nepal. *Biomed. Research International*, 7, 1-7 (2016).
- 48. Ahmed, A.A., Salem, H.M., Hamoud, M.M. and Amer, M.M. Avian Colibacillosis, multidrug resistance, antibiotic alternatives: An updated review. *Egyptian Journal of Veterinary Sciences*, 1-21, In Press (2025).
- Cantón, R., González-Alba, J.M. and Galán, J.C. CTX-M enzymes: origin and diffusion. Frontiers in Microbiology, 3, 110. (2012).
- 50. Chaudhary, M.K., Jadhav, I. and Banjara, M.R. Molecular detection of plasmid mediated bla_{TEM}, bla_{CTX-M}, and bla_{SHV} genes in Extended Spectrum β-Lactamase (ESBL) Escherichia

- coli from clinical samples. Ann. Clin. Microbiol. Antimicrob., 22, 33 (2023).
- 51. Radwan, F.M., EL-Shemy, A., Bosila, M.M., Bastamy, M.A. and Amer, M.M. Evaluation of the efficacy of purified egg yolk immunoglobulin (IgY) in preventing and controlling newcastle disease virus infection in broiler chickens. *Egyptian Journal of Veterinary Sciences*, 55(4), 931-943 (2024).
- 52. Mosa, M.I., Salem, H.M., Bastamy, M.A. and Amer, M.M. The Potential diversity of intestinal Enterobacteriaceae in broiler chickens is associated with infectious bursal disease virus infection. *Egyptian Journal of Veterinary Sciences*, 55(4), 917-930 (2024).
- 53. Kong, M. and Chen, X. G. Antimicrobial properties of chitosan and mode of action: A state of the art review. *International Journal of Food Microbiology*, **144**(1), 51–63 (2015).
- 54. Awaad, M.H.H., El Moustafa, K.M., Zoulfakar, S.A., Elhalawany, M.S., Mohammed, F.F., El-Refay, R.M. and Morsy E.A. The role of silver nanoparticles in the reluctance of colisepticemia in broiler chickens. *Journal of Applied Poultry Research*, 30(2), 100155 (2021).
- Chandrasekaran, M., Kim, K.D. and Chun, S.C. Antibacterial activity of chitosan nanoparticles: A review. *Processes*, 8(9), 1173 (2020).
- 56. Zheng, Z.M. and Zhang, Y.Z. Distribution of virulence-associated genes of avian pathogenic Escherichia coli isolates in China. Agricultural Sciences in China, 7(12), 1511-1515 (2008).
- 57. Yaguchi, K., Ogitani, T., Osawa, R., Kawano, M., Kokumai, N., Kaneshige, T., Noro, T., Masubuchi, K. and Shimizu, Y. Virulence factors of avian pathogenic *Escherichia coli* strains isolated from chickens with Colisepticemia in Japan. *Avian Dis.*, 51(3), 656-62 (2007).
- 58. Robicsek, A., Strahilevitz, J., Jacoby, G.A., Macielag, M., Abbanat, D., Park, C.H., Bush, K. and Hooper, D.C. Fluoroquinolone modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. *Nat. Med.*, 12, 83-88. (2006).
- Archambault, M., Petrov, P., Hendriksen, R.S., Asseva, G., Bangtrakulnonth, A., Hasman, H. and Aarestrup, F.M. Molecular characterization and occurrence of extended-spectrum beta-lactamase resistance genes among *Salmonella enterica* serovar Corvallis from Thailand, Bulgaria, and Denmark. *Microb. Drug Resist.*, 12(3),192-8. (2006)
- Ibekwe, A.M., Murinda, S.E. and Graves, A.K. Genetic diversity and antimicrobial resistance of *Escherichia* coli from human and animal sources uncovers multiple resistances from human sources. *PLoS ONE*, 6 (6), e20819. (2011)

مكافحة الاشيرشية القولونية المسببة للأمراض فى الطيور و المقاومة للأدوية المتعددة و تحديد جينات الضراوة و تأثير جزيئات الكيتوزان النانونية عليها

 2 عبد المحسن أحمد نوفل 1 ، شريف عبد المنعم معروف 2 ، حازم محهد ابراهيم 8 ، أزهار جابر شلبي 4 وايمان رجب

¹ قسم البكتريولوجي، معمل دمياط الفرعي، معهد بحوث الصحة الحيوانية، مركز البحوث الزراعية، مصر

² قسم الميكروبيولوجي، كلية الطب البيطري، جامعة القاهرة، مصر.

³ معهد الأمصال واللقاحات، مركز البحوث الزراعية، مصر.

4 المعمل المرجعي للرقابة على الدواجن، مركز البحوث الزراعية، مصر.

الملخص

الإيشريشية القولونية الممرضة للطيور (APEC) تُعد من الأسباب الرئيسية للإصابة بالقولون البكتيري، مما يؤدي إلى خسائر اقتصادية كبيرة في إنتاج الدواجن على مستوى العالم. هدفت هذه الدراسة إلى التحقيق في مدى انتشار جينات الضراوة ومقاومة المصادات الحيوية في عزلات APEC من محافظات مصرية مختلفة، بالإضافة إلى تقييم فعالية جسيمات الكيتوزان النانوية (CNPs) كمعالج بديل محتمل. تم جمع 180 عينة من الأعضاء الحشوية من دجاج التسمين والبياض والأمهات المشتبه بإصابتها بالقولون البكتيري؛ حيث أظهرت 158 عينة (88%) نموًا بكتيريًا، وتم تأكيد 85 عزلة (54%) على أنها E. coli بواسطة الاختبارات البيوكيميائية، وتم تصنيف 69 عزلة منها (18%) مصليًا. أظهر اختبار الحساسية للمضادات الحيوية مستويات عالية من المقاومة، حيث وُجدت مقاومة كاملة للستربتوميسين وحمض الناليديكسك، بالإضافة إلى مقاومة ملحوظة للأمبيسيلين والالوكسيسيكلين. تم الكشف عن ثلاث جينات للمقاومة (blaCTX-Male)، و (papC)، وكانت الضراوة yara (blaCTX-Male)، ومعادل المقاومة وينه على المنادات الكيتوزان النانوية باستخدام تقنية التبلور الأيوني، بمتوسط جم جسيم بلغ 56.6 نانومتر، وأظهرت نشاطًا مضادًا فعالًا ضد البكتيريا عند تركيز مثبط أدنى بلغ 50 ملغم/مل. تُبرز هذه النتائج الانتشار المقلق لـ APEC متعددة المقاومة في الدواجن المصرية، وتشير إلى أن جسيمات الكيتوزان النانوية تعد بيلًا واعدًا ومستدامًا للمضادات الحيوية.

الكلمات الدالة: الايشيريشية القولونية، مقاومة مضادات الميكروبات، جينات الضراوة، تفاعل البلمرة المتسلسل، جزيئات الكيتوزان النانونية.