Evaluation of The Antimicrobial, Antioxidant, and Other Biological Activities of Tribulus terrestris Plants Collected From Different Countries

Ghadir A. El-Chaghaby1*, Oğuzhan Koçer2, Nuh Korkmaz3, İmran Uysal4, Sayed Rashad1 and Mustafa Sevindik5

1 Regional Center for Food and Feed, Agricultural Research Center, Giza, Egypt.
2 Department of Pharmacy Services, Vocational School of Health Services, University of Osmaniye Korkut Ata, Türkiye.
3 Department of Biology, Faculty of Engineering and Natural Sciences, University of Osmaniye Korkut Ata, Türkiye.
4 Department of Food Processing, Bahçe Vocational School, University of Osmaniye Korkut Ata, Osmaniye, 80000, Türkiye
5 Department of Biology, Faculty of Engineering and Natural Sciences, University of Osmaniye Korkut Ata, Osmaniye, 80000, Türkiye.

Abstract

The present investigation aimed to assess the antibacterial, antioxidant, anticholinesterase, and antiproliferative properties of Tribulus terrestris L. samples obtained from Iraq and Turkey. Furthermore, the total contents of flavonoids and phenols were ascertained. The above-ground parts of the plant samples were extracted with ethanol and Total antioxidant status (TAS), total oxidant status (TOS) as well as oxidative stress index (OSI) were determined. Antimicrobial activity against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, Candida albicans, C. krusei and C. glabrata was assessed. Also, the antiproliferative activity was tested against the lung cancer cell line. The results showed that plant extracts were effective against microorganisms at 50-200 µg/mL concentrations. TAS values of the plant samples collected from Iraq and Türkiye were determined as 7.703±0.246 mmol/L and 6.992±0.216 mmol/L, TOS values as 15.983±0.477 μmol/L and 10.595±0.253 μmol/L, and OSI values as 0.207±0.001 and 0.152±0.005, respectively. In addition, the anti-AChE values of the samples collected from Iraq and Türkiye were 51.99±1.78 μg/mL and 74.24±2.35 μg/mL, and the anti-BChE values were 40.85±2.66 μg/mL and 64.43±2.58 μg/mL, respectively. Plant extracts showed strong effects against the A549 cancer cell line in a concentration-dependent manner. In addition, the total phenolic contents of the samples collected from Iraq and Türkiye were determined to be 90.10±3.66 mg/g and 78.24±1.51 mg/g, and the total flavonoid contents were 112.17±3.12 mg/g and 119.50±2.52 mg/g, respectively. It can be concluded that T. terrestris plants have strong biological activities that enable them to be applied as food or feed additives as well as pharmaceutical supplements.

Keywords: medicinal plants; bioactivity; bacteria; fungi; free radicals

Introduction

Nowadays, people around the world are seeking natural products either in food or in medication and many other aspects. Plants with their phytochemical components, flavor, fragrance, and health-promoting properties are an excellent source of bioactive compounds that may be utilized in the production of functional food [1]. Plant bioactive components also make them highly used for medical applications. Numerous plant substances, including carotenoids, flavonoids, and polyphenols, have strong anti-inflammatory and antioxidant properties. These substances shield cells from oxidative stress and inflammation-related damage by neutralizing dangerous free radicals and lowering inflammation. These conditions can lead to chronic illnesses including diabetes, cardiovascular disease, and neurological problems [2].

Concerns about the sustainability of human existence are growing, making the control of microorganisms’ detrimental effects more and more important. Although many types of microbes live in...
biological harmony with the human body and its environs, their unrestrained and rapid expansion can lead to some extremely dangerous problems [3]. Antibiotic resistance has led to a change in focus towards biologically active components extracted from plant species that are utilized in herbal medicine. These components have the potential to generate new and powerful sources of antibacterial and antifungal activity [4].

Reactive oxygen species (ROS) and endogenous antioxidants are not balanced in humans, which results in oxidative stress and a chain reaction that damages proteins, DNA, and lipids. By acting as scavengers of reactive free radicals, antioxidants from plant extracts can prevent lipid peroxidation and other associated processes, shielding the body against the illnesses that come from them [5].

Cancer refers to a cell or collection of cells that have skipped the checkpoint and become unchecked, proliferating quickly and unabated. To provide patients with metastases with more effective therapies, it is imperative to find medications with a high selectivity toward cancer cells. Numerous plants have yielded beneficial medications for the management of several malignancies, such as lung cancer [6].

The neurodegenerative illness with the highest prevalence is Alzheimer's disease (AD). It has been proposed that oxidative damage is one of the main causes of AD. It has been recommended to use natural antioxidants instead of synthetic ones to avoid the risks involved. Natural antioxidants have been used as possible leads for the development of new medicines since they are an important part of health and may prevent or delay cell damage [7].

Many studies have reported that plants have many activities such as antiaging, antiallergic, anti-inflammatory, antioxidant, antimicrobial, antiproliferative, anticancer, hepatoprotective, and DNA protective activities [8].

Tribulus terrestris, a member of the Zygophyllaceae family, is also referred to as puncture vine, gokshur, or gokharu. It is native to the Mediterranean region and has traditionally been used to cure a wide range of illnesses in Chinese and Indian medical systems [9]. In this context, determining the biological activities of such plants is very important for their medicinal use. Our study aimed to determine the antimicrobial, antioxidant, antiproliferative, and anticholinesterase activities of *Tribulus terrestris* L. plants collected from Iraq and Turkey. In addition, the total phenolic and flavonoid contents of the plant were also determined. The present work throws light on *T. terrestris* plant bioactivities which could be further employed in food or medicine.

Material and Methods

Plant collection and extraction

Plant samples were collected from Duhok (Iraq) and Gaziantep (Türkiye). The plant samples that were taken were air-dried and ground. Then thirty grams of each sample were extracted in a soxhlet apparatus at 50°C using 250 milliliters of ethanol (70%) for the extraction process. After extraction the excess solvent was eliminated using a rotary evaporator and the extracts were kept in the freezer until further used.

Antimicrobial analyzes

The antimicrobial activity of extracts prepared from plant samples against bacteria and fungi was determined using the agar dilution method. The tested bacterial and fungal stains are depicted in Table 1. Muller Hinton Broth (bacteria) and Roswell Park Memorial Institute (RPMI) 1640 Medium RPMI 1640 Broth (fungus) media were used as media. Plant extracts were tested for their antimicrobial effects by a range of concentrations (12.5–800 µg/mL). The lowest doses of extract that prevented microorganisms from growing were identified and given as µg/[10, 11].

Antioxidant tests

Antioxidant values of plant samples were measured using Rel Assay kits (MEGA TIP San. Tic. Ltd.Sti, Turkey) following the procedure provided with the kit. Trolox was used as a reference standard for total antioxidant status (TAS) tests and results were expressed as mmol Trolox equivalent/L. Hydrogen peroxide was used reference standard for total oxidant status (TOS) tests and the results were expressed as µmol hydrogen peroxide equivalent/L. Finally, the oxidative stress index (OSI) was determined as {(OSI = TOS/(TASx10)} [12].

Anticholinesterase activity test

Acetylcholinesterase and butyrylcholinesterase activities of plant samples were measured by the Ellman method [13]. The samples have been processed into solutions with concentrations ranging from 200 to 3.125 µg/mL. To prepare the microplate, 130 µL of 0.1 M pH=8 phosphate buffer, and 10 µL of stock solution were mixed with 20 µL of enzyme solution (AChE or BChE). Incubation was done for 10 minutes at 25 °C in the dark. Next, 20 µL of DTNB (5,5'-dithiobis-(2-nitrobenzoic acid)) solution and 20 µL of the substrate (acetylcholine iodide or butyrylcholine iodide) were added and the absorbances were read at 412 nm. The IC50 values for the findings were computed and given in µg/mL.

Total Phenolic and Total Flavonoid Tests

Sample extracts (1mL) were mixed with Folin-Ciocalteu reagent (1mL) and Na₂CO₃ (0.75 mL) and incubated for 2 hours. Then, measurements were
made spectrophotometrically at 760 nm using a calibration curve of gallic acid standard solution, the total phenolic content was expressed in mg/g [14].

Total flavonoid content was determined by the aluminum chloride test [15]. 0.1 mL Al(NO3)3 (10%), 0.1 mL potassium acetate (1 M), 4.3 mL methanol, and 0.5 mL plant extract were mixed and incubated for 40 minutes. Then, absorbance was measured at 415 nm using Quercetin as reference standard, and total flavonoid content was expressed in mg/g.

Antiproliferative tests

The antiproliferative activity of plant extracts against the A549 lung cancer cell line was determined by the MTT test, a reduction assay that assesses cellular metabolic activity and is indicative of cell viability. Different concentrations of plant extracts were used 25, 50, 100, and 200 µg/mL and the plates were read at 570 nm [16].

Results and Discussion

Antioxidant properties of Tribulus terrestris

Oxidant substances are free radicals formed as a result of several metabolic processes. Their rise can cause cellular damage [17], and the antioxidant defense system helps to mitigate this impact [18]. Oxidative stress is caused by an imbalance between the antioxidant defense system and oxidant substances [19], which can lead to serious illnesses including cancer, cardiovascular problems, and neurological diseases. Supplemental antioxidants can reduce oxidative stress [20]. In our study, the antioxidant status of T. terrestris was determined and the results are shown in Table 2.

To the best of our knowledge, TAS, TOS, and OSI values of Tribulus terrestris have not been previously reported in the literature. The TAS value reflects the total amount of chemicals having antioxidant potential in natural products [28]. It was observed that the antioxidant potential of the T. terrestris samples collected from Iraq used in our study was higher than the samples collected from Türkiye. In addition, it has been observed that the plant has higher potential compared to other plants such as Viola odorata, Alcea kurdica, Galium aparine, Silybum marianum, and Ferulago platycarpa previously investigated using the same method. The TOS value represents the total amount of oxidant-active chemicals created by natural products as a result of environmental factors and metabolic activity [28]. In the present work, TOS value of Tribulus terrestris was found to be higher in the samples collected from Iraq than in the samples collected from Türkiye. In addition, the TOS value of T. terrestris samples collected from Iraq was determined to be higher than F. odorata, A. kurdica, H. salicifolium, G. glabra, S. marianum and F. platycarpa, and lower than G. aparine. Whereas, the TOS values of Tribulus terrestris samples collected from Türkiye were higher than Viola odorata and Alcea kurdica, and lower than Helianthemum salicifolium, Glycyrrhiza glabra, Galium aparine and Ferulago platycarpa. It could be noticed that as the regions where the plant samples were collected changed, the levels of oxidant compounds produced within it changed. Nevertheless, the fact that the plant generally had high TOS values. The OSI value shows the percentage of antioxidant compounds suppressing endogenous oxidant compounds [24]. The data indicated that Tribulus terrestris samples collected from Iraq had higher OSI value than compared to that from Türkiye. Also, OSI values of Tribulus terrestris samples from Iraq were higher than Viola odorata, Helianthemum salicifolium, Glycyrrhiza glabra, and lower than Alcea kurdica, Galium aparine, Silybum marianum and Ferulago platycarpa. While the OSI values of Tribulus terrestris from Türkiye were higher than Viola odorata and lower than Alcea kurdica, Helianthemum salicifolium, Galium aparine, Glycyrrhiza glabra, Silybum marianum and Ferulago platycarpa. In this context, Tribulus terrestris could be regarded as an important natural antioxidant source.

Total phenolic and total flavonoid contents

Plants have the potential to produce many biologically active compounds. It is known that these compounds with different properties have different effects. In our study, total phenolic and total flavonoid contents of T. terrestris were determined and depicted in Table 3. The total phenolic contents and total flavonoid contents of the T. terrestris samples collected from both Iraq and Türkiye used in our study were higher than the values previously reported by Patil et al. [29] for the ethanol extract of T. terrestris being 41.2 mg/g and 601.3 mg/g for total phenols and total flavonoid content; respectively. It is thought that this difference arises from the difference in the regions where the plants used are collected.

Anticholinesterase effect

Neurodegeneration has been established as the essential pathophysiological alteration in most brain-related illnesses. Despite contemporary science's ongoing efforts to provide a medicinal or surgical remedy, the results have been unfavorable. Most elderly adults continue to have clinical concerns about neurodegenerative illnesses such as Alzheimer's [30]. Natural products could offer a good supplement to inhibit cholinesterase and combat this illness. In our study, the anti-AChE and anti-BChE potentials of T. terrestris collected from Iraq and Türkiye were determined and the obtained IC50 values are shown in Table 4.

In our study, it was determined that the anti-AChE and anti-BChE potentials of T. terrestris...
collected from Türkiye were higher than the samples collected from Iraq. In addition, it was determined that both samples exhibited higher activity than galantamine used as a control. The presence of enzymes that cause disease etiology and their suppression may be very beneficial in disease treatment [31]. It was determined that T. terrestris used in our study had anticholinesterase activity. It was also determined to have regionally varying effects.

Antimicrobial activity

In recent years, the treatment of many microbial diseases has become quite difficult. In particular, the emergence of resistant microorganisms has made it difficult to combat its effects [32]. The possible side effects of synthetic drugs and the insufficient effects of the antimicrobial drugs used have necessitated the discovery of new antimicrobial drugs (Sevindik et al., 2023). Thus, determining the potential antimicrobial activities of plants is very important for new drug designs [33]. In our study, the effects of T. terrestris samples collected from Iraq and Türkiye against bacterial and fungal strains were investigated and the results for the minimum extract concentration that inhibited microbial growth are shown in Table 5.

It has been reported in the literature that the methanol extract of T. terrestris collected from India is effective against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Proteus vulgaris [34]. In a different study conducted in India, it was reported that Tribulus terrestris had effects against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa and Streptococcus pyogenes [35]. In a study conducted in Iran, it was reported that the water extract of T. terrestris was effective against Staphylococcus aureus, Escherichia coli, Staphylococcus epidermidis, Bacillus subtilis, Pseudomonas aeruginosa, Klebsiella pneumonia, Shigella flexneri, Salmonella typhimurium, Candida kruzei and Candida albicans [36]. In our study, the tested extract showed different activity against different bacteria, it was determined that the samples collected from Türkiye generally showed a higher antimicrobial effect. In addition, it was determined that samples from both regions showed the highest effectiveness against A. baumannii among microorganisms. As a result, it was determined that T. terrestris has antimicrobial potential.

Antiproliferative activity

Cancer cases have been increasing in recent years. Different types of treatments come to the fore in cancer treatment. However, in addition to these treatments, supportive treatments are very beneficial in improving the health of patients. Herbal treatments are important supportive resources in cancer cases. In this context, determining the anticancer activities of plants is very important in terms of their potential use. In our study, the effects of T. terrestris against the A549 human lung adenocarcinoma cell line was determined and the findings are shown in Figure 1.

It has been reported in the literature that hexane, ethyl acetate, methanol, and aqueous extracts of T. terrestris are effective against the A549 human lung adenocarcinoma cell line [37]. In our study, the ethanol extract of Tribulus terrestris collected from Iraq and Türkiye was used and its effect against the A549 human lung adenocarcinoma cell line was investigated. As a result of the study, it was determined that the samples collected from Türkiye showed higher activity than the samples collected from Iraq. In addition, it was determined that the proliferation of the samples used in the study increased due to the increase in concentration. In this context, it was determined that T. terrestris could be a natural anticancer agent.

Conclusion

It could be concluded that T. terrestris exhibits robust and diverse biological activities including antibacterial, antioxidant, antiproliferative, and anticholinesterase characteristics. T. terrestris could be considered a natural antioxidant and antimicrobial agent that may be employed in food preservation or as a food feed additive. Also, the anticancer antiproliferative, and anticholinesterase activities of the plant make it a good candidate for pharmaceutical applications. Further studies could be addressed by extracting and purifying the bioactive phytochemicals of T. terrestris plant and identifying the mechanisms behind its bioactivities.

Author Contributions

Funding statement

This research received no external funding.

Acknowledgments

None

Conflicts of Interest

The authors declare no conflict of interest.

Ethical consideration

Not applicable for this work.
TABLE 1. Tested bacteria and fungi

<table>
<thead>
<tr>
<th>Tested bacterial stains</th>
<th>Tested fungal strains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aureus ATCC 29213</td>
<td>Candida albicans ATCC 10231</td>
</tr>
<tr>
<td>S. aureus MRSA ATCC 43300</td>
<td>C. krusei ATCC 34135</td>
</tr>
<tr>
<td>Enterococcus faecalis ATCC 29212</td>
<td>C. glabrata ATCC 90030</td>
</tr>
<tr>
<td>Escherichia coli ATCC 25922</td>
<td></td>
</tr>
<tr>
<td>Pseudomonas aeruginosa ATCC 27853</td>
<td></td>
</tr>
<tr>
<td>Acinetobacter baumannii ATCC 19606</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2. TAS, TOS, OSI values of Tribulus terrestris extracts compared to previously studied plants

<table>
<thead>
<tr>
<th>Plant</th>
<th>TAS (mmol trolox equivalent/L)</th>
<th>TOS (μmol hydrogen peroxide equivalent/L)</th>
<th>OSI (arbitrary unit)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tribulus terrestris (Iraq)</td>
<td>7.703±0.246</td>
<td>15.983±0.477</td>
<td>0.207±0.001</td>
<td>Present work</td>
</tr>
<tr>
<td>Tribulus terrestris (Türkiye)</td>
<td>6.992±0.216</td>
<td>10.595±0.253</td>
<td>0.152±0.005</td>
<td>Present work</td>
</tr>
<tr>
<td>Viola odorata</td>
<td>6.752</td>
<td>7.886</td>
<td>0.069</td>
<td>[21]</td>
</tr>
<tr>
<td>Alcea kurdica</td>
<td>3.298</td>
<td>8.312</td>
<td>0.252</td>
<td>[22]</td>
</tr>
<tr>
<td>Helianthemum salicifolium</td>
<td>5.147</td>
<td>18.679</td>
<td>0.346</td>
<td>[23]</td>
</tr>
<tr>
<td>Glycyrrhiza glabra</td>
<td>5.767</td>
<td>12.144</td>
<td>0.211</td>
<td>[25]</td>
</tr>
<tr>
<td>Silybum marianum</td>
<td>5.688</td>
<td>15.552</td>
<td>0.273</td>
<td>[26]</td>
</tr>
</tbody>
</table>

TABLE 3. Total phenolic content and total flavonoids of Tribulus terrestris

<table>
<thead>
<tr>
<th>Plant</th>
<th>TPC (mg gallic acid equivalent/g)</th>
<th>TFC (mg quercetin equivalent/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tribulus terrestris (Iraq)</td>
<td>90.10±3.66</td>
<td>112.17±3.12</td>
</tr>
<tr>
<td>Tribulus terrestris (Türkiye)</td>
<td>78.24±1.51</td>
<td>119.50±2.52</td>
</tr>
</tbody>
</table>

TABLE 4. Anti-AChE and anti-BChE potentials of Tribulus terrestris

<table>
<thead>
<tr>
<th>Samples</th>
<th>AChE (µg/mL)</th>
<th>BChE (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tribulus terrestris (Iraq)</td>
<td>51.99±1.78</td>
<td>40.85±2.66</td>
</tr>
<tr>
<td>Tribulus terrestris (Türkiye)</td>
<td>74.24±2.35</td>
<td>64.43±2.58</td>
</tr>
<tr>
<td>Control (Galantamine cholinesterase inhibitor)</td>
<td>11.44±1.31</td>
<td>20.68±1.62</td>
</tr>
</tbody>
</table>

TABLE 5. Antimicrobial potential of Tribulus terrestris

<table>
<thead>
<tr>
<th>Tested Microorganisms</th>
<th>Minium extract inhibitory concentration (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus</td>
<td>100</td>
</tr>
<tr>
<td>S. aureus MRSA</td>
<td>200</td>
</tr>
<tr>
<td>E. faecalis</td>
<td>200</td>
</tr>
<tr>
<td>E. coli</td>
<td>200</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>100</td>
</tr>
<tr>
<td>A. baumannii</td>
<td>50</td>
</tr>
<tr>
<td>C. glabrata</td>
<td>100</td>
</tr>
<tr>
<td>C. albicans</td>
<td>200</td>
</tr>
<tr>
<td>C. krusei</td>
<td>200</td>
</tr>
</tbody>
</table>

Fig. 1. Antiproliferative Effects of *Tribulus terrestris* $*25, 50, 100$ and 200 extracts concentration

References

35. Gopinath, V., MubarakAli, D., Priyadarshini, S., Priyadharsshini, N. M., Thajuddin, N. and Velusamy, P. Biosynthesis of silver nanoparticles from Tribulus terestris and its antimicrobial

تقييم إمكانيات مضادات الميكروبات، والخصائص مضادات الأكسدة، والأنشطة البيولوجية الأخرى لنباتات تريبولوس تيريستريس التي تم جمعها من بلدان مختلفة

غير الشغابي

الملخص

هدف البحث الحالي هو تقييم الخصائص المضادة للبكتيريا، والمضادات الأكسدة، والمضادات الكولينستراز، والخصائص المضادة للتاثير لعنبات تريبولوس تيريستريس التي تم الحصول عليها من العراق وتركيا، وعلاوة على ذلك، تم التأكد من المحتوى الكلي للفلافونويدات والفينولات. تم استخلاص الاجزاء الموجودة فوق سطح الأرض من العينات النباتية باستخدام الإيثانول ومن ثم تحديد حالة مضادات الأكسدة الكلية (TAS)، وحالة الأكسدة الكلية (TOS)، وكذلك مؤشر الإجهاد التأكسدي (OSI). تم تقييم النشاط المضاد للميكروبات ضد المكورات العنقودية الذهبية، الإشريكية القولونية، الزائفة الزنجارية، الراكدة البومانية، المبيضات البيضاء، C. krusei، و C. glabrata. كما تم استخدام النشاط المضاد للتكاثر ضد خط خلايا سرطان الرئة. أظهرت النتائج أن المستخلصات النباتية كانت فعالة ضد الكائنات الحية الدقيقة بتركيزات 50-200 ميكروغرام/مل. تم تحديد قيم TAS على أنها 7.703 ± 0.246 و 6.992 ± 0.216 في العينات التي تم جمعها من العراق وتركيا. كما تم تحديد قيم TOS على أنها 15.983 ± 0.477 و 10.595 ± 0.253، وقيم مضادات AChE على أنها 51.99 ± 1.78 و 74.24 ± 2.66، وقيم مضادات BChE على أنها 40.85 ± 2.50 و 64.43 ± 0.01. يمكن استنتاج أن نباتات تريبولوس تيريستريس لها أنشطة بيولوجية قوية تمكنتها من استخدامها كمضادات هدفية ومضادات الأكسدة، وكذلك كمضادات جلوكوزية.