Molecular Characterization of Avian Mycoplasma with Special Reference to Antibiotic Sensitivity in Egypt

Nasima Mohamed Hider1*, Eid E. Abdelaziz2, Salwa M. Helmy1 and Sahar O. Ahmed2

1Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Kafr Elsheikh University, Kafir Elsheikh, 33511, Egypt.
2Department of Mycoplasma, Animal Health Research Institute (AHRI), Agriculture Research Central ARC, Dokki, Giza, 12618, Egypt.

Abstract

Avian mycoplasmal infection is one of the most significant financial threats affecting the global poultry business so, a convenient approach for detecting etiological agents; Mycoplasma gallisepticum (MG) and Mycoplasma synoviae (MS) to characterize the circulating field strains and determine their antimicrobial susceptibility profiles. A study conducted between 2017 to 2022 in Kafr Elsheikh, Sharkia and Dakahlia, governorates in Egypt on different avian sectors. Twelve MG and four MS isolates were identified by culture and confirmed by PCR. Partial sequence of mgc2 gene of two MG isolates from turkey (MG.B.T.) and (MG.W.T.) was submitted on gene bank under accession no. OM632677 and OM632678 respectively and revealed that there are two different MG circulating strains in turkey, for determining the antimicrobial susceptibility profiles, ten MG, one MS isolates from different avian sector were tested against eight antimicrobials for determination of lowest MIC, three antibacterials, tiamulin (0.009μg/ml), tilmicosin (0.039μg/ml) and tylosin (0.019μg/ml), offered the lowest MICs of all efficient medications. MS isolate was sensitive for the eight antimicrobials, most MG isolates were sensitive to ciprofloxacin and streptomycin while Lincospectin has intermediate effect. Isolate MG11 from baladi chicks was completely resistant to all antimicrobials. The two MG isolates from turkey were resistant to (erythromycin and tylosin), so, further investigation for macrolides resistant genes detection is required. In conclusion, the present study confirms the presence of MG infection in turkey and chicken flocks of Sharkia and Dakahlia governorates.

Keywords: PCR, MIC, MG, MS, Turkey.

Introduction

Mycoplasmas are the smallest and simplest self replicating bacteria [1]. These bacteria need a peptidoglycan-based hard cell wall and are therefore resistant to antibiotics like penicillin and its equivalents that are successful against the majority of bacterial cell culture chemicals. All the species that belong to the class Mollicutes are collectively referred to by the meaningless term Mycoplasma. Due to their extremely small genomes (0.58-2.20 Mb compared to 4.64 Mb for E-coli), which are incapable of replication, Mycoplasmas have limited metabolic options for both living and reproduction[2]. Mycoplasma gallisepticum and Mycoplasma synoviae are bacterial pathogens responsible for poultry illness [3]. M. gallisepticum produces chronic respiratory disorder of farm chicken and turkey, particularly with managerial stressors and/or other respiratory infections. Lachrymation, conjunctivitis, sneezing, cough, sinusitis, and reduction of egg production in poultry define the disease [4,5]. Direct or indirect contact with susceptible birds, contact with infected birds, contact with infected

*Corresponding author: Nasima Mohamed hider, E-mail: nasimahider018@gmail.com, Tel.: 202-01030877606
(Received 31/01/2024, accepted 15/05/2024)
DOI: 10.21608/ejvs.2024.266946.1815
©2024 National Information and Documentation Center (NIDOC)
carriers, or contact with contaminated trash all contribute to the vertical or horizontal spread of the *M. gallisepticum* infection[6]. MS can result in respiratory disorder, synovitis, or silent infection. *Mycoplasma* cultivation methods are hard, time-consuming, and need sterile conditions; hence, molecular detection is the most common way for routinely diagnosing MG infection [7]. Methods for preventing and controlling avian *Mycoplasmosis* consists predominantly of biosecurity, therapy, and immunization. One of the effective ways to manage the illness and reduce economic loss caused by MG infection is the wide spread use of antibiotics. Numerous drug classes have been shown to be effective against MG, including fluoroquinolones, macrolides, tetracyclines, and pleuromutilin [8,9]. It was found that MG could develop antibacterial resistance as a result of prolonged antibiotic use [10,11]. The prevention and treatment of *Mycoplasmosis* frequently involves the use of antibiotics from the macrolide family, such as tylosin and tilmicosin [12]. Prior research has demonstrated the influence of point mutations in the 23S rRNA-encoding genes on the emergence of macrolide resistance in a number of *Mycoplasma* species, including *M. gallisepticum* and *M. synoviae*. According to [12,13].

Material and Methods

Sampling

One hundred and twenty tissues of trachea, lungs and air sacs were collected from twelve broiler flocks, five layers flocks, three broiler breeder flocks and seven turkey flocks from different localities Dakahlia and Sharkia governorates. These samples are taken from diseased or freshly died birds, under complete aseptic conditions, and serological examination (SPA) of MG and MS. Take serum samples from day old chicks under aseptic condition. These samples were taken from Kafr Elsheikh governorate.

Serological identification of MG and MS

By using serum plate agglutination test (SPA) according to [14], Hundred serum samples were examined using (Lilli dale diagnostic MG RSA antigen, batch no:122001. Lilli dale diagnostic MS RSA antigen, batch no:012101), according to the manufacturer's guidelines. Take serum samples from day old chicks. Mix one drop of serum with drop of antigen then wait two minutes till appearance of agglutination.

Isolation and Identification of MG and MS:

Mycoplasma was cultivated on pleuropneumonia like organism PPLO broth and agar base media described by [15]. We have taken pieces of organs (trachea, lungs and air sacs) in sterile conditions in *Mycoplasma* broth (about 5 grams of tissue sample per 25 ml broth), then kept at 37 °C for 3 days, following that, 20 μl of the incubated broth culture was transferred and streaked on PPLO agar. The agar plates were kept at 37 °C in a damp candle jar with decreased oxygen tension [16]. Using an inverted microscope, the cultures were then examined every day till 30 days of incubation in the existence of the same fried-egg colonies of MG and MS. Biochemical tests, such as those for digitonin sensitivity, glucose fermentation, arginine hydrolysis, film and spot production, were carried out as originally described by [17,18].

Molecular Identification

By using Genomic DNA extraction kit (kit Gene Direx, Taiwan), following the manufacturer's instructions. All mycoplasma isolates were confirmed as *M. gallisepticum* and *M. synoviae* by PCR using species-specific primers for 16S rRNA and mgc2 genes, following previously published methods [7,19].

Detection of 16s ribosomal RNA gene by PCR:

The MG 16s ribosomal RNA gene was detected using the PCR test on every sample. 1 μL of each primer and 25 μL of the 10X PCR mix were added to a 50μL reaction container to perform the PCR reaction. (20μM) MGF (5’GAGCTAATCTGTAAAGTTGGTC3’) and MGR (5’GCTTCCCTTGCGGTTAGCAAC3’), MS primer

MF (5’GAGAAGCAAATAGTGTATAC3’) MSR: (5’CGATCGCTCTCGGAAGTTAAC3’) 2 μL Taq DNA polymerase, 19 μL deionized distilled water and 2 μL template DNA. The following three steps were part of the thermal cycle: First, primary denaturation was carried out for three minutes at 94 °C. In the subsequent phase, there were forty cycles with three segments: denaturation at 94°C for 30 seconds, annealing at 55°C for 30 seconds, and extension at 72°C for 60 seconds. The third and final extension was eventually carried out for five minutes at 72 °C [7]. The PCR products were visualized by staining with ethidium bromide after electrophoresed on 1.5% agarose gel for 1 hour at 100 V. In all PCR assays, reference vaccine *Mycoplasma gallisepticum* strain Ts-11 from (IFT company) was used as the positive control and distilled water as the negative control.

Detection of mgc2 gene by PCR

The second specific MG primers, mgc2-2F (5’-CGC AAT TTG GTC CTA ATC CCC AAC A-3’)
and mgc2-2R (5'-TAA ACC CAC CTC CAG CTT TAT TTC C-3') were used for amplifying mgc2 gene (300bp) [19]. For the mgc2-PCR, a mixture with a total volume of 50 µL was used. It contained 25 µL of Dream Taq Green master mix (10X PCR mix), 1 µL of each primer (50 pmol µL-1), 2 µL of Taq DNA polymerase, 19 µL of deionized distilled water, and 2 µL of extracted DNA as template. The reaction was run through 40 cycles, with denaturation at 95 °C for one minute, annealing at 60 °C for forty seconds, primary extension at 72 °C for ten seconds, and final extension at 72 °C for one minute. The three rounds of different temperature and time (°C/min) segments—94°C for 20 seconds, 51°C for 30 seconds, and 72°C for one minute—corresponded to denatured target DNA. Every amplification reaction was carried out in a thermal cycler. UV trans illumination equipment (Spector line, Model 312A, 312 nm Ultraviolet, USA) was used to visualize 1% agarose gel electrophoresis stained with ethidium bromide in 1X Tris-acetic acid-EDTA buffer.

Minimal Inhibitory Concentration (MIC) Method

The micro-broth method test was carried out twice precisely as[9]. The tested antimicrobials were made with concentrations of antimicrobial agents ranging from 0.016 to 16 µg/ml. The maximum concentration of antibiotics that inhibited the metabolic activity of the tested organisms was noted. The persistence of the initial color without changing served as the metric for determining the minimum inhibitory concentration (MIC). Eight antimicrobials were tested, including erythromycin 20% (Mefeco), lincospectin 100% (Pfizer), streptomycin 100% (Mefeco), doxycycline 50% (Atco Pharma), and ciprofloxacin 20% (Arabco-med). There are three types of phenolic compounds: tilmicosin (25%), tylosin (100%), and tiamulin (45%).

Sequencing of mgc2 gene and Phylogenetic Analysis

QIA fast PCR Product extraction kit was used to purify PCR products. (Qiagen, Valencia). The sequence reaction was done with a big dye Terminator V3.1 cycle sequencing kit (Perkin-Elmer) and subsequently purified with a Centrisep spin column. A BLAST® (Basic Local Alignment Search Tool) [20], analysis (Applied Biosystems 3130 genetic analyzer, HITACHI, Japan) was primarily done to determine sequence identity to Gen Bank accessions. Meg Align was used to generate the phylogenetic tree, and neighbor-joining was used to conduct phylogenetic studies in MEGA X: Molecular Evolutionary Genetics Analysis on several computing systems [21].

Results

Prevalence of M.gallisepticum and M. synoviae infection in day old chick MG detection was 37% by serum plate agglutination(SPA), 3.3% and 10% by culture and PCR respectively, while MS isolates were 11% by SPA , 1.1% and 4.4% by culture and PCR respectively. Cobb breed is negative SPA,culture and negative PCR as in table(1). Mycoplasma isolates appear as tiny smooth colonies fried egg appearance on agar with acharacteristic feature (film and spot) in MS as in Table (1) and Figs (2,3).

Twelve MG isolates and four MS isolates were characterized by culture, biochemical tests and PCR. MG isolates were50% by PCR where MS isolates were 16.7%. Three MG isolate and two MS isolates was isolated and identified from twelve broiler flocks (from one hundred and twenty samples of trachea, lungs and air sacs) from dakhila while one MG and one MS isolates was identified from five layer flock examened from kafrelsheikh . Also, one MG and one MS from three broiler breeder flocks from dakhilia and four MG isolates from seven turkey flocks(three from back yard black turkey from dakhilia and three MG from four white turkey flocks from sharkia as in Table (2).

The PCR results for MG and MS are shown in Fig. (5, 6) by using OIE primer giving 185bp and 211bp respectively . results for mgc2 gene are shown in Fig. (7). Based on the nucleotide phylogenetic tree of mgc2 gene, 7 positive samples giving 300bp.

MG isolates were examined for eight antibiotics. The three antibiotics with the lowest MICs were tiamulin (0.009g/ml), tilmicosin (0.039g/ml), and tylosin (0.019g/ml). Nasif, MG64, T19 are susceptible to all antimicrobial while MG11 is completely resistant to them while MG-B.T of black turkey and MG-W.T of white turkey were resistant to doxycycline and tylosin . Also, MS was sensitive to macrolides (erythromycin, tylosin, tilmicosin). but MS was resistant to (doxycycline, lincospectin) further studies are recommended for this point as in Table (3).

Sequence examination of MG mgc2 gene of black turkey

The sequence of mgc2 gene of MG was submitted to gene bank database under accession no. OM632677. MGmgc2 (OM632677) showed 100% nucleotide identity and amino acids identity with other isolates such KT943467.1 M. gallisepticum/ Eis-9-CK-15, FJ234839.1 M. gallisepticum/ RabE1-08, and JN113343.2 M. gallisepticum/ MG NMH-and97% with HQ591356 .1 M.gallisepticum /Eis4-C-10 as in Fig(8), table (4)
The sequence of mgc2 gene of MG was submitted to gene bank database under accession no. OM632678.1 M. gallisepticum/ Eidmg9.2-2-022. Although nucleotide identity between MGOM632678.1 and other isolates KX268626.1, KX268627.1, KX268628.1, KX268629.1, KX268630.1, KX268622.1, KP300761.1, KP279743.1, KP300757.1, KP300758.1 and KP300760.1 which were got from the gene bank were 76%, the amino acid identity was 100% as in Fig (9) and Table (5).

Discussion

Infections caused by avian Mycoplasma have been detected in Egypt for many years. Based on serological studies, bacteriological and recently, molecular diagnosis. The current study deals with the occurrence, diagnosis and treatment of Avian Mycoplasmas are causing CRD and infectious sinusitis in chicken and turkeys, respectively from the poultry flocks of Sharkia, Dakahlia and Kafrelsheikh governorates of Egypt. MG and MS are the two most common species of Mycoplasma that cause respiratory and joint diseases in chickens in the different Egyptian governorates (Giza, Fayoum, Benisuef, Menya, and Alexandria) [22]. In the current study prevalence of M. gallisepticum was 37% by serum plate agglutination (SPA), 3.3% by culture and 10% by PCR, while M. synoviae Prevalence in day old chick in Kafrelsheikh was 11% by SPA, 1.1% by culture and 4.4% by PCR, so, MG infection is predominant in day old chicks than MS. results opposite to [23]. In Libya who carried sero-prevalence for MS and MG which found Ms more predominant than MG in local and imported flocks [24]. In their study, the seroprevalence was examined by age. Infection in breeders was indicated by the antibodies found in one- to three- day-old chicks, which ranged from 29 to 54%. Due to the degradation of maternal antibodies, the seropositive rate was lowest in 3- to 4-week-old hens. The higher sero-prevalence of 71 to 83% in older chickens older than 35 weeks may be the result of a natural infection. So, circulated M. gallisepticum strain vertically transmitted from breeder the main reservoir to day old chicks and still silent not make any disease in chickens until immuno suppression occurs due to viral vaccination, bacterial, viral infection or environmental stressors as bad hygiene or defect in biosafety measures. Twelve MG isolates and four MS isolates were characterized by culture, biochemical tests and PCR. MG isolates were 50% by PCR where MS isolates were 16.7% in Egypt 2020 [25]. For the purpose of this investigation, three identified M. gallisepticum strains, Zagazig/2014/1 (Mk310102), Zagazig/2014/2 (MK 310103), and Zagazig/2017 (MK310101), were sequenced and phylogenetically analysed. The results showed high similarity (96.3-99.5%) with previous Egyptian published sequences of MG mgc2 (field isolates). In this work, the 16S rRNA gene in the avian samples was found using the PCR technique. Positive samples were sent for mgc2 gene sequencing. Two Positive samples from the black and white turkey were subjected to partial sequencing and analysis of mgc2 gene. The Egypt white turkey strain OM632678 isolated from Sharkia showed 100% similarity to KX268629. Thailand strain and Indian strain KP279743 as mentioned by [5] 2021 and 47% to local Egyptian turkey strain HQ591357/2011 and 39% similarity to MG676447 local Egypt chicken 2018. Although nucleotide identity between mgc2 gene of white turkey MGOM632678. and other isolates KX268626- KX268630 and KX268622. from Thailand and KP300761., KP279743., KP300757., KP300758., and KP300760. from India; which were got from the gene bank were 76%, but the amino acid identity was 100%. Additionally, isolates previously reported from Pakistan shared 98–99 percent similarity, as mentioned by [26]. The type strain isolated from black turkey (OM632677) from Dakahlia governorate showed 100% nucleotide identity and amino acids identity with other Egyptian isolates such KT943467.1 M. gallisepticum/ Eis-9-CK-15, FJ234839.1 M. gallisepticum/ RabE1-08 which is similar to F strain, and JN113343.2 M. gallisepticum/ MG NMH-2 and 97% with HQ591356. 1M. gallisepticum /Eis4-C-10. Due to the potential virulence of the vaccine F-strain in broilers and turkeys, it is not advised for use in Italy [27], while in Egypt it is licensed and commonly used. The results of isolation and molecular characterization confirmed the presence of MG infection in chicken and turkey flocks of Dakahlia and Sharkia governorates. These results in accordance with [5] 2021 who mentioned that, early diagnosis using PCR techniques would enable the adoption of biosecurity and control measures well in advance of any financial loss. There was just a slight difference between the isolates used in their investigation and the isolates that are common in Pakistan, India and USA [28, 29]. Others [30] in their study in USA concluded that, the M. gallisepticum ts-11 vaccine and ts-11 isolates showed genomic changes compared to the M. gallisepticum R low genome in the form of insertions/deletions of sequences. These isolates were collected from the field and from ts-11 animal passage trials. In Iran 2017 [31] after the 16S rRNA gene PCR method the results of the sequencing of the mgc2 gene on positive samples indicated that MG was present in Iranian backyard and commercial turkey farms. The molecular study revealed significant sequence similarities between
several Iranian turkey isolates and MG isolates from Pakistan and India. Also, they identified two specific substitutions: a switch from proline to leucine at positions 62 and 90 in five isolates, and an exchange from polar methionine to nonpolar isoleucine. Some antigenic changes may result from substitutions of MG nucleic acids and corresponding amino acid sequences. The white turkey strain showed 47% to local Egyptian turkey strain HQ591357/2011 and 39% similarity to MG676447 local Egypt chicken2018 because they were containing nonpolar isoleucine while now the Mg strains that containing polar methionine are predominant. In Egypt, Mycoplasma gallisepticum has a severe impact on the chicken business [32]. One of the effective ways to control Mycoplasmosis is the widespread use of antibiotics. Numerous drug classes have been shown to be effective against MG, including fluoroquinolones, macrolides, tetracyclines, and pleuromutilin [8,9] but, MG could develop antibacterial resistance as a result of prolonged antibiotic use [10,11]. The prevention and treatment of mycoplasmosis frequently involves the use of antibiotics from the macrolide family, such as tylosin and tilmicosin [12]. Prior research has demonstrated the influence of point mutations in the 23S rRNA-encoding genes on the emergence of macrolide resistance in a number of Mycoplasma species, including M. gallisepticum and M. synoviae. According to [12,13]. Concerning sensitivity to different antibiotics mycoplasma isolates of this study were examined for eight antibiotics. The three antibiotics with the lowest MICs were tiamulin (0.009g/ml), tilmicosin (0.039g/ml), and tylosin (0.019g/ml). Nas6, MG64, T19 are susceptible to all antimicrobial while MG1 is completely resistant to them while MG-B.T of black turkey and MG-W.T of white turkey were resistant to erythromycin, doxycycline and tylosin. Also, MS was sensitive to macrolides (erythromycin, tylosin, tilmicosin), but MS was resistant to doxycycline and lincospectin, further studies are recommended for this point. Our research in accordance with [33] who concluded that the circulated MG strains are mutant type of MG F vaccine strain. Using of PCR in diagnosis early enable to get rid of infection by MG this accordance with [34] who concluded that the PCR test the most effective due to its rapidity in MG diagnosis.

Conclusion

The present research verifies the existence of MG infection in backyard and commercial turkey farms as well as in flocks of chickens of sharkia and Dakahlia governorates in Egypt. Thus widespread vaccination and regular surveillance are required to stop the spread of illness. Early diagnosis using PCR techniques would enable the adoption of biosecurity and control measures well in advance of any economic loss.

Acknowledgment

The authors would like to thanks Department of Mycoplasma, Animal Health Research Institute Dokki, Giza, for financial support and necessary facilities to carry out this work.

Conflict of interest:

The authors have declared no conflict of interest.

Funding statement

Self-funding

Ethical approval

This study was conducted with the approval (KFS-IACUC / 161 / 2023) from Animal Care and Use Experimental Committee, Faculty of Veterinary Medicine Kafrelsheikh University Egypt.

Authors’ Contributions

All the authors are contributed equally in the search work.
TABLE 1. Serological, Culture and PCR detection of Mycoplasma gallisepticum and Mycoplasma synoviae in different day old chick Breeds flock in Kafrelsheikh

<table>
<thead>
<tr>
<th>No.</th>
<th>Breed</th>
<th>Mycoplasma gallisepticum (MG)</th>
<th>Mycoplasma Synoviae (MS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SPA</td>
<td>Culture</td>
</tr>
<tr>
<td>1</td>
<td>Baladi1</td>
<td>4/10</td>
<td>14/30=49.3%</td>
</tr>
<tr>
<td>2</td>
<td>Baladi2</td>
<td>5/10</td>
<td>14/30=49.3%</td>
</tr>
<tr>
<td>3</td>
<td>Baladi3</td>
<td>5/10</td>
<td>2/10=10%</td>
</tr>
<tr>
<td>4</td>
<td>Avian (48) 1</td>
<td>2/10</td>
<td>7/20=35%</td>
</tr>
<tr>
<td>5</td>
<td>Avian (48) 2</td>
<td>5/10</td>
<td>2/10=10%</td>
</tr>
<tr>
<td>6</td>
<td>Arbo plus1</td>
<td>3/10</td>
<td>6/20=30%</td>
</tr>
<tr>
<td>7</td>
<td>Arbo plus2</td>
<td>3/10</td>
<td>1/10=10%</td>
</tr>
<tr>
<td>8</td>
<td>Saso</td>
<td>5/10</td>
<td>50%</td>
</tr>
<tr>
<td>9</td>
<td>Fayomi</td>
<td>5/10</td>
<td>50%</td>
</tr>
<tr>
<td>10</td>
<td>Cobb</td>
<td>0/10</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>37/100=37%</td>
</tr>
</tbody>
</table>

MG detection was 37% by serum plate agglutination (SPA), 3.3% and 10% by culture and PCR respectively, while MS isolates were 11% by SPA, 1.1% and 4.4% by culture and PCR respectively. Cobb breed is negative SPA, culture and negative PCR.

TABLE 2. Culture and PCR detection of Mycoplasma gallisepticum and Mycoplasma synoviae in Chicken Breeds and Turkey in Kafrelsheikh, Dakahlia and Sharkia governorates:

<table>
<thead>
<tr>
<th>Year of isolation</th>
<th>Governorate</th>
<th>Avian Breed</th>
<th>Mycoplasma isolated =24</th>
<th>Mycoplasma confirmed by PCR=20</th>
<th>Strain isolated in this study</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>Kafrelsheikh</td>
<td>Layers</td>
<td>3</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G+</td>
<td>F-</td>
<td>D+</td>
</tr>
<tr>
<td>2018</td>
<td>Dakhlia</td>
<td>Broiler breeder</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>2018</td>
<td>Dakhlia</td>
<td>Broiler</td>
<td>3</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td></td>
<td>G+</td>
<td>F-</td>
<td>D+</td>
</tr>
<tr>
<td>2017</td>
<td>Dakhlia</td>
<td>Back yard turkey</td>
<td>5</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>2021</td>
<td></td>
<td>Turkey joint</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2022</td>
<td></td>
<td>Turkey trachea</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2018</td>
<td>Sharkia</td>
<td>Turkey sinus</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td>White turkey</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2022</td>
<td></td>
<td></td>
<td>G+</td>
<td>F-</td>
<td>D+</td>
</tr>
</tbody>
</table>

No. 16 4 4 4 12 4

● MG isolates and 4 MS isolates were characterized by culture, biochemical tests and PCR. MG isolates were50% by PCR while MS isolates were16.7% .3 MG isolate and 2 MS isolates was isolated and identified from 12 broiler flocks from dakhlia while one MG and one MS isolates was identified from five layer flock examined from kafrelsheikh . Also, one MG and one MS from three broiler breeder flocks from dakhlia and 4 MG isolates from seven turkey flocks (three from back yard black turkey from dakhlia and three MG from four white turkey flocks) from sharkia.

Table 3: Sensitivity test: MIC levels of eight antimicrobial agents against *Mycoplasma gallisepticum* and *M. synoviae* isolates:

<table>
<thead>
<tr>
<th>NO.</th>
<th>MG isolated Strains</th>
<th>Ciprofloxacin (MIC)</th>
<th>Doxycycline (MIC)</th>
<th>Lincomycin (MIC)</th>
<th>Streptomycin (MIC)</th>
<th>Erythromycin (MIC)</th>
<th>Tiamulin (MIC)</th>
<th>Tilmicosin (MIC)</th>
<th>Tylosin (MIC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MG10</td>
<td>1.25 5</td>
<td>0.039 5</td>
<td>0.156 2.5</td>
<td>0.313 5</td>
<td>0.039 10</td>
<td>0.069 5</td>
<td>0.039 20</td>
<td>0.009 5</td>
</tr>
<tr>
<td>2</td>
<td>MG11</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>3</td>
<td>BRO19</td>
<td>2.5 0.78</td>
<td>1.25 1.5</td>
<td>0.625 0.78</td>
<td>0.156 0.313</td>
<td>5 0.313</td>
<td>0.313 0.78</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>4</td>
<td>T19</td>
<td>2.5 0.78</td>
<td>1.25 1.5</td>
<td>0.156 0.313</td>
<td>10 0.009 0.039</td>
<td>0.039 0.019</td>
<td>0.019 0.78</td>
<td>0.039 0.039</td>
<td>0.019 0.78</td>
</tr>
<tr>
<td>5</td>
<td>MG 6</td>
<td>1.25 0.039</td>
<td>0.313 0.625</td>
<td>10</td>
<td>0.009 0.039</td>
<td>0.039 0.019</td>
<td>0.019 0.78</td>
<td>0.039 0.039</td>
<td>0.019 0.78</td>
</tr>
<tr>
<td>6</td>
<td>DO 1</td>
<td>2.5 0.156</td>
<td>0.625 5</td>
<td>0.78 0.156</td>
<td>0.039 2.5</td>
<td>0.313 0.313</td>
<td>0.313 0.313</td>
<td>0.313 0.313</td>
<td>0.313 0.313</td>
</tr>
<tr>
<td>7</td>
<td>Nasi 5</td>
<td>5 0.313</td>
<td>1.25 0.625</td>
<td>0.156 0.156</td>
<td>0.156 1.25</td>
<td>0.25 0.313</td>
<td>0.313 0.313</td>
<td>0.313 0.313</td>
<td>0.313 0.313</td>
</tr>
<tr>
<td>8</td>
<td>MG 64</td>
<td>2.5 0.625</td>
<td>2.5 1.25</td>
<td>0.625 0.625</td>
<td>0.825 0.313</td>
<td>0.313 0.313</td>
<td>0.313 0.313</td>
<td>0.313 0.313</td>
<td>0.313 0.313</td>
</tr>
<tr>
<td>9</td>
<td>MG-W.T.</td>
<td>NA 5</td>
<td>2.5 NA</td>
<td>NA</td>
<td>0.78 20</td>
<td>0.313 10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>MG-B.T.</td>
<td>NA 0.156</td>
<td>2.5 NA</td>
<td>NA</td>
<td>5 0.039</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>11</td>
<td>MS</td>
<td>NA 20</td>
<td>10 NA</td>
<td>NA</td>
<td>0.078 2.5</td>
<td>0.313 0.156</td>
<td>0.156 0.156</td>
<td>0.156 0.156</td>
<td>0.156 0.156</td>
</tr>
</tbody>
</table>

- **R**: resistant, **NA**: not applied.

Three antibiotics with the lowest MICs were tiamulin (0.009g/ml), tilmicosin (0.039g/ml), and tylosin (0.019g/ml). Nasi6, MG64, T19 are susceptible to all antimicrobial while MG11 is completely resistant to them while MG-B.T of black turkey and MG-W.T of white turkey were resistant to doxycycline and tylosin. Also, MS was sensitive to macrolides (erythromycin, tylosin, tilmicosin), but MS was resistant to (doxycycline, lincomycin).
Fig. 1. Infectious sinusitis of turkey

Isolation of Mycoplasma colonies on PPLO media give fried egg appearance under stereomicroscope (40x)

Fig. 2. *Mycoplasma synoviae* (MS) (Film and spot)

Fig. 3. *Mycoplasma synoviae*

Fig. 4. *Mycoplasma gallisepticum* (MG)
Fig. 5. Electrophoretic agarose gel of mycoplasma gallisepticum using Oie primers
M- 100bp-1000bp DNA ladder
1- Control positive MG 2. Control negative 3-10 Positive field isolates PCR results -16S rRNA gene giving characteristic band at 185bp.

Fig. 6. Electrophoretic gel of MS using specific primers
1- Control positive MS 2-100bp-500bp ladder 3- 3,4,6 field MS positive samples. Detection of 16S rRNA gene of MS three mycoplasma isolates were identified as specific band at 211 bp as in fig (6).

Fig. 7. Mycoplasma gallisepticum using Mgc2 primer
M :100bp-1000 ladder
lane1:Control positive MG
lane2: Control negative
lane3:3-9 positive MG field isolates giving characteristic band at 300bp
Fig. 8. Show the phylogenetic tree of MG mgc2 black square: this study isolate.

Table 4. Nucleotides (horizontal) and amino acids (vertical) identity between MG mgc2 of black turkey and other gene bank isolates.

<table>
<thead>
<tr>
<th>Seq</th>
<th>>OM632677.1 M. gallisepticum/ Eidmg-2.1-2-022</th>
<th>ID 100%</th>
<th>100%</th>
<th>100%</th>
<th>97%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>>KT943467.1 M. gallisepticum/ Eidmg-2.1-2-022</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>97%</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>>HQ981350.1 M. gallisepticum/ Eidmg-2.1-2-022</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>97%</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>>OM632677.1 M. gallisepticum/ Eidmg-2.1-2-022</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>97%</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>>F2234839.1 M. gallisepticum/ Eidmg-2.1-2-022</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>95%</td>
<td>95%</td>
<td>95%</td>
<td>97%</td>
</tr>
<tr>
<td></td>
<td>>M113550.1 M. gallisepticum/ Eidmg-2.1-2-022</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>97%</td>
</tr>
<tr>
<td></td>
<td>>M217452.1 M. gallisepticum/ Eidmg-2.1-2-022</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>95%</td>
<td>99%</td>
</tr>
<tr>
<td></td>
<td>>M217452.1 M. gallisepticum/ Eidmg-2.1-2-022</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>95%</td>
<td>99%</td>
</tr>
<tr>
<td></td>
<td>>JN113389.2 M. gallisepticum/ Eidmg-2.1-2-022</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>95%</td>
<td>99%</td>
</tr>
<tr>
<td></td>
<td>>JN113389.2 M. gallisepticum/ Eidmg-2.1-2-022</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>95%</td>
<td>99%</td>
</tr>
<tr>
<td></td>
<td>>JN113389.2 M. gallisepticum/ Eidmg-2.1-2-022</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>95%</td>
<td>99%</td>
</tr>
<tr>
<td></td>
<td>>JN113389.2 M. gallisepticum/ Eidmg-2.1-2-022</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>95%</td>
<td>99%</td>
</tr>
</tbody>
</table>

Egypt J. Vet. Sci. Vol. 56, No. 4 (2025)
Fig. 9. show the phylogenetic tree of MG mgc2 white turkey in this study isolate.

TABLE 5. Nucleotides (horizontal) and amino acids (vertical) identity between MG mgc2 of black turkey and other gene bank isolates.
References

The molecular characterization of Mycoplasma birds with special reference to antimicrobial sensitivity in Egypt.

Nasima M. Hider1,2, Ebad-al-Saud Abeer Al-Husayn,3, Mowloud Mahamid,2 and Samir Ahmed Eshai2

1 Department of Bacteriology and Fungi and Immunology, Faculty of Veterinary Medicine, University of Kaufr Al-Qayyim, Kaufr Al-Qayyim, Egypt.
2 Mycoplasma Department, Animal Health Research Institute (AHRI), ARC, Giza, Egypt.

Abstract

Mycoplasma infection in birds is one of the most important economic diseases that affect the world's poultry industry, so the appropriate approach to identifying the causal agents of Mycoplasma gallicticum (MG) and Mycoplasma synoviae (MS) is to characterize the field strains in existence and determine their sensitivity to antimicrobials. A study was conducted from 2017 to 2022 in governorates of Qaufr Al-Qayyim and Sharqiya and Dakhila in Egypt on different poultry species, with 12 MG isolates and 4 MS isolates identified by cultivation methods and confirmed by the ribosomal RNA test. The partial sequence of the mgc2 gene of two MG isolates (MG.B.T and MGW.T) was submitted to the GenBank database under accession numbers OM632677 and OM632678. Two different MG strains were identified in turkeys, to determine their sensitivity to various antimicrobials, 10 MG isolates and one MS isolate from different poultry species were tested against eight antimicrobials to determine the MIC, and three antimicrobials for bacteria, tiamulin (0.009 mg/mL), telithromycin (0.039 mg/mL), and tylosin (0.019 mg/mL), demonstrated the lowest MICs. MS isolate was sensitive to all eight antimicrobials, and most MG isolates were sensitive to spectinomycin and streptomycin, while lincomycin had a moderate effect. MG isolate from local chickens was completely resistant to all antimicrobials. MG isolates from turkeys were resistant to erythromycin and tylosin, so the need to conduct further research on macrolides resistance. From the study, it is concluded that the current study confirms the occurrence of the disease in turkey and chicken flocks in Sharqiya and Dakhila governorates.

Key words: Ribosomal RNA test, Antimicrobial sensitivity, Mycoplasma gallicticum, Mycoplasma synoviae, turkey.