The Role of Folic Acid in Decreasing the Effects of Sodium Valproate on Brain and Placenta of Pregnant Mice

Maha Kh. Aljuboury and Amina Jasim Al-Hayani

1Department of Biology, College of Sciences, University of Mosul, Mosul, Iraq.
2Department of Basic Nursing Sciences, College of Nursing, Ninevah University, Mosul, Iraq.

This study investigates the impact of sodium valproate on fetuses’ brains and the placenta of pregnant mice, evaluating concurrent folic acid treatment’s effect. 30 pregnant female mice were separated into 6 groups of 5 mice each, as follows: G1, control group received no treatment, G2, sodium valproate group received 250 mg/kg, G3, sodium valproate group received 500 mg/kg, G4, folic acid alone, G5 sodium valproate group received 500 mg/kg and folic acid 5 mg/kg, G6, sodium valproate group received 250 mg/kg and folic acid 5 mg/kg. All dosages were administered orally at a rate of one dose of each agent per day for 18 days. Histopathological alterations were observed in the brains of mice fetuses treated with sodium valproate at two different doses (250 and 500 mg/kg) in the second and third groups. They demonstrated significant blood vessel congestion in the cortex, vasogenic edema, perineuronal vacuolation, and satellitosis. In the group of folic acid plus sodium valproate demonstrated tissue structure similar to normal. Histopathological changes were also observed in the placentas of the sodium valproate groups include Severe vacuolated glycogen cells and Spongiosidrosis with necrosis and hypoplasia of villi, and the biochemical changes included decrease in the level of glutathione and the superoxide dismutase, with an increase in the level of malondialdehyde and changes in the levels of cholesterol and triglycerides. We infer that folic acid has a beneficial effect in minimizing the deleterious effects of sodium valproate on the brains of fetuses and the placentas of pregnant mice.

Keywords: Folic acid, Brain, Sodium valproate, Placenta, Histological changes.

Introduction

Sodium valproate treatment is used to treat different types of epilepsy, such as tonic and myoclonic epilepsy, and is also given to treat some psychological conditions such as borderline and bipolar disorders [1].

Administration of sodium valprolate causes inhibition of the GABA neurotransmitter. Sodium valproate is known to cause inhibition of neuronal activity [2]. One study proved that giving sodium valprolate treatment at the same dose used to lower blood pressure to pregnant mice, and these doses caused fetal heart and brain malformations [3]. Other research conducted on pregnant rats also proved that these doses of sodium valproate, which is used to reduce blood pressure, also cause damage to the placenta, lead to fetal death, and then miscarriage [4]. The rats are less susceptible to the embryonic toxicity of sodium valproate than mice [5].

It was mentioned in another research that the chance of giving birth to a child with a congenital malformation is 2.5% higher in mothers who take sodium valproate to treat high blood pressure compared to healthy mothers [6].

*Corresponding author: Amina Jasim Al-Hayani, E-mail: amina.jasim@uoninevah.edu.iq, Tel.: +964 771 071 4742
(Received 29/01/2024, accepted 01/04/2024)
DOI: 10.21608/EJVS.2024.266246.1811
©2025 National Information and Documentation Center (NIDOC)
Folic acid is considered an important source for the emergence and development of the neural tube, which will later develop into the brain and spinal cord during the early fetal stages, and its deficiency in the body of the pregnant mother during the first three months of pregnancy causes congenital malformations such as spina bifida and anencephaly [7].

Folic acid deficiency can cause weakness in the placenta, which is responsible for transporting the necessary food and oxygen to the fetus, which affects the growth and development of the fetus and may cause miscarriage or death of the fetus [8].

Taking a daily dose of folic acid estimated at 400 micrograms of folic acid can reduce the occurrence of congenital malformations in the event of pregnancy, and the treatment should be taken before and at least 3 months after pregnancy [7].

Our goal is to find out the toxic effects of valproate on fetuses, as well as the effect of using folic acid with it on fetuses.

Material Methods

Animals

To begin, male and female white mice weighting 20-30 grams were bred. Got it from the College of Veterinary Medicine’s Animal House. Each cage had a male-female ratio of 3:1 (3 females, 1 male). On the first day of pregnancy, the vaginal plug was checked after the mice mated. Day zero is the mating day, and the following day is the first day of pregnancy.

Pregnant mice were taken and used for the experiment the same period of pregnancy. The animals were placed in plastic mouse cages in a laboratory room, taking temperature and humidity into account, as well as supplying food and water for the experimental mice.

Medications used

The Pioneer Company supplied sodium valprolate and folic acid for this investigation, and the proper dose was estimated based on the animal’s weight. Experiment design: 30 animals were separated into 6 groups of 5 mice each, as shown below:

- G1 The control group was left without treatment.
- G2 sodium valprolate group- dose of 250 mg/kg.
- G3 sodium valprolate group- dose of 500 mg/kg.
- G4 folic acid group alone, 5 mg/kg.
- G5 group: Sodium valprolate, dose of 500 mg/kg, and folic acid, 5 mg/kg.
- G6 group: Sodium valprolate, dose of 250 mg/kg, and folic acid, 5 mg/kg.

All doses were administered orally with a customized dosing syringe at a rate of one dosage of each medicine daily for 18 days. On the 18th day of treatment, the mice were anesthetized for the purpose of drawing blood, then the mice were sacrificed for the purpose of extracting the fetuses and their brains, as well as the placenta, and were preserved in neutral formalin until pathological histological sectioning was performed. The blood samples were left to coagulate before being placed in a centrifuge to separate the serum and preserve it at freezing temperature until biochemical tests were performed.

Biochemical tests

The following variables were measured:

- Glutathione (GSH) according to (9)
- Superoxide dismutase (SOD) using a measurement kit from Biolabo.
- Malondialdehyde according to (10).
- Triglyceride measurement kit from Biolabo.
- Cholesterol measurement kit from Biolabo.

Statistical Analysis

The results were statistically analyzed according to the simple experimental system in a completely randomized design, and Duncan’s multiple range test was used to test the differences between the groups and the results were significant at the probability level (P≤0.05), using the statistical program (SAS,2001) ready to find the mean and standard error.

Results

The results showed that the mice brains of the negative control group (A1) showed normal architecture represented by neurons (A), glial cells (B), and blood vessels (B).as in Fig (1). The rest of the groups showed the occurrence of histopathological lesions of the brain of pregnant mice compared to the control group. In the second group treated with Sodium valprolate, strong infiltration was showing congestion of blood vessels in the cortex (A), vasogenic edema (B), perineuronal vacuolation (C), and satellitosis as in Fig (2). vasogenic (A), cytogenetic edema (B), and
perineuronal vacuolation (C) as in Fig (3), while; mice brains of the Folic acid 5 mg group showed normal architecture represented by neurons (A), glial cells (B), and blood vessels (B), mice brains of the folic acid + Sodium valproate 250 mg group showed intact neurons (A), mild perivascular edema (B) and mild vacuolization (C) as in Fig (5). vasogenic (A), and cytogenetic edema (B), perineuronal vacuolation (C) and satellitosis (D) as in Fig (6).

In the placenta; of mice, the placenta of the negative control group (A1) showed normal architecture of Decidua (A), Basal Zone (B) with glycogen cells (C) and Spongiotrophoblast (D), Labyrinth (E) with Trophoblasts (F), fetal blood vessels (G) and villi (H). as in Fig (7), the rest group showed the occurrence of histopathological changes as of mice placenta of the Sodium valproate 250 mg/Kg group showing severe vacuolated glycogen cells (A) and Spongiotrophoblast (B) with necrosis (C) and hypoplasia of villi (D), as in Fig (8), showing hypoplasia of villi (A) and edema (B) in the Labyrinth, as in Fig (9). in groups treated with rat placenta of positive control group (A2) showing thin Decidua (A), with edema (B) vacuolated glycogen cells (C) and Spongiotrophoblast (D) with necrosis (E), as in Fig (10), in the groups treated with folic and sodium valproate, the folic acid +250 mg/Kg Sodium valproate group showing mild vacuolated glycogen cells (A) and hemorrhage (B), as in Fig (11). mild vacuolated glycogen cells (A) and mild hemorrhage (B). as in Fig (12). These findings show that sodium valproate and folic acid have an effect on the construction of the brains and blood vessels of pregnant rat fetuses, highlighting the necessity of future research in this field.

It also illustrates the detrimental influence of sodium valproate and the good effect of folic acid on the structure of the placenta in pregnant mice, emphasizing the significance of further research in this area. The table below contains information on numerous biochemical parameters (GSH, SOD, MDA, Cholesterol, and Triglycerides) measured under various experimental conditions involving various groups and dosages of sodium valproate and folic acid (Table 1).

The findings indicate that sodium valproate alone, particularly at the higher dose of 500 mg/Kg, significantly lowers GSH levels when compared to the control. When combined with sodium valproate, folic acid appears to counteract this decrease in GSH levels (Table 1).

SOD is an antioxidant enzyme that aids in the prevention of oxidative damage. The results reveal that when compared to the control, both doses of sodium valproate alone reduce SOD levels. However, folic acid appears to boost SOD function, particularly when paired with sodium valproate. (Table 1). MDA is an oxidative stress measure, and greater levels suggest more oxidative damage. Both sodium valproate doses appear to raise MDA levels as compared to the control group, indicating increased oxidative stress. Folic acid appears to attenuate this increase in MDA when combined with sodium valproate (Table 1).

According to the results, both doses of sodium valproate alone (500 mg/Kg more prominently) appear to raise cholesterol levels when compared to the control. Triglyceride levels rise with sodium valproate, especially at larger doses (Table 1).

Discussion

Giving pregnant mice sodium valprolate at two different levels (250 and 500 mg/kg) on the first day of pregnancy had a detrimental and adverse influence on the formation of their fetal brains. The findings revealed histopathological and biochemical alterations in the embryonic brains. These changes are characterized by substantial blood vessel congestion in the cortex, vasogenic edema, perineuronal vacuolation, and satellitosis. These changes may imply that sodium valproate has a deleterious influence on mouse embryonic development.

In contrast, results from a group that received 5 mg/kg of folic acid revealed an improvement in the structure of the embryonic brains of mice. It has been shown that giving folic acid to pregnant rats with valprolate reduces the embryotoxic effects in the rat. While the use of valprolate alone has toxic effects on the brains and placentas of fetuses, this is consistent with previous studies that showed such effects [11].

Previous studies have found beneficial effects of folic acid in the early embryonic stages in speeding up the closure of the neural tube, while decreasing its presence in the body delays this process. Likewise, the presence of valprolate makes the matter worse by causing effects on preventing the reproduction of proteins necessary for building cells and metabolism, and thus causing tissue deformities [12; 13].

It has also been shown that valproate affects mRNA and gene expression in embryos as well as causing mutations [14; 15].

Studies show that the toxic effects of valproate in the placenta are similar to the brain, as it affects the replication of messenger DNA and the replication of nucleic acids, as well as the extent of normal tissue development, while the use of folic acid enhances the protection of the fetus and its healthy growth through the normal growth of the placenta, which contributes to the transfer of nutrients, and oxygen to the fetus, as well as maintaining fetal balance [16; 17].

Current data confirmed that valproate has a negative effect on the placenta that can be reduced by giving folic acid with it. It has been proven that folic acid has protective effects against oxidative stress caused by the administration of valproate, which has been shown to reduce antioxidants in the body [14]. All of these have negative effects on the profile of lipids in the blood [18]. Giving folic acid with sodium valproate can reduce such previous effects, and giving folic acid reduces lipid peroxidation and malondialdehyde, which indicates its ability to reduce oxidative stress [19, 20].

Conclusion

Giving folic acid with sodium valproate can have a positive effect in treating and preventing the teratogenic effects of embryos induced by sodium valproate.

Acknowledgment

The researchers are grateful to the University of Mosul for supporting this study.

Conflict of interest

None

Ethical approve:

Acknowledgment: All thanks and appreciation to the College of Science, University of Mosul and College of Nursing, Ninevah University for their supporting this work.

Conflict of Interest: None

Funding statement: Self-funding

Author’s contribution: All researchers participated in designing the research. The first researcher carried out the practical aspect, statistical analysis and tables. The second researcher completed the writing.

Fig. 1. Photomicrograph of mice brain of negative control group (A1) showing normal architecture representing by neurons (A), glial cells (B) and blood vessels (B). H&E stain, 100X.

Fig. 2. Photomicrograph of mice brain Sodium valprolate 250 mg/Kg group showing congestion of blood vessels in the cortex (A), vasogenic edema (B), perineuronal vacuolation (C) and satellitosis (D). H&E stain, 400X.

Fig. 3. Photomicrograph of mice brain of the Sodium valprolate 500 mg/Kg group showing vasogenic (A), and cytogenetic edema (B) and perineuronal vacuolation (C). H&E stain, 100X.
THE ROLE OF FOLIC ACID IN DECREASING THE EFFECT OF SODIUM VALPROATE …

Fig. 4. Photomicrograph of mice brain of the Folic acid 5 mg group showing normal architecture representing by neurons (A), glial cells (B) and blood vessels (B). H&E stain, 100X.

Fig. 5. Photomicrograph of mice brain of the folic acid + Sodium valprolate 250 mg group showing intact neurons (A), mild perivascular edema (B) and mild vacuolization (C). H&E stain, 100X.

Fig. 6. Photomicrograph of mice brain of the folic acid + Sodium valprolate 500 mg/Kg group showing vasogenic (A), and cytogenetic edema (B), perineuronal vacuolation (C) and satellitosis (D). H&E stain, 400X.

Fig. 7. Photomicrograph of mice placenta of negative control group (A1) showing normal architecture of Decidua (A), Basal Zone (B) with glycogen cells (C) and Spongiotrophoblast (D), Labyrinth (E) with Trophoblasts (F), fetal blood vessels (G) and villi (H). H&E stain, 100x.

Fig. 8. Photomicrograph of mice placenta of Sodium valproate 250 mg/Kg group showing severe vacuolated glycogen cells (A) and Spongiotrophoblast (B) with necrosis (C) and hypoplasia of villi (D). H&E stain, 100x.

Fig. 9. Photomicrograph of mice placenta of the Sodium valbrolate 500 mg/Kg group showing hypoplasia of villi (A) and edema (B) in the Labyrinth. H&E stain, 100x.

Fig. 10. Photomicrograph of mice placenta of positive control group (A2) showing thin Sodium valbrolate (A), with edema (B) vacuolated glycogen cells (C) and Spongiotrophoblast (D) with necrosis (E). H&E stain, 400x.

Fig. 11. Photomicrograph of mice placenta of the folic acid +250 mg/Kg Sodium valbrolate group showing mild vacuolated glycogen cells (A) and hemorrhage (B). H&E stain, 100X.

Fig. 12. Photomicrograph of mice placenta of the folic acid+ 500 mg/Kg of Sodium valbrolate showing mild vacuolated glycogen cells (A) and mild hemorrhage (B). H&E stain, 100X.
TABLE 1. Effect of sodium valproate and folic acid on some biochemical parameters in mice serum

<table>
<thead>
<tr>
<th>Groups/ Standards</th>
<th>Control</th>
<th>250 mg/Kg sodium valproate</th>
<th>500 mg/Kg sodium valproate</th>
<th>Folic acid 5mg/kg</th>
<th>250 mg/Kg sodium valproate + folic acid</th>
<th>500 mg/Kg sodium valproate + folic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSH mmol/L</td>
<td>6.180±0.073a</td>
<td>3.310±0.98c</td>
<td>2.915±1.02b</td>
<td>4.966±1.01b</td>
<td>4.812±0.041b</td>
<td>4.480±0.052a</td>
</tr>
<tr>
<td>SOD Ng/ml</td>
<td>9.08±1.12b</td>
<td>7.28±1.03c</td>
<td>6.35±0.97c</td>
<td>11.9±1.54a</td>
<td>12.89±1.02a</td>
<td>12.6±1.58a</td>
</tr>
<tr>
<td>MDA ng/ml</td>
<td>7.913±0.091b</td>
<td>9.652±0.023c</td>
<td>9.385±0.012c</td>
<td>6.543±0.043a</td>
<td>7.892±0.015b</td>
<td>7.409±0.107b</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>128.21±2.82 b</td>
<td>173.21±3.45 a</td>
<td>137.52±4.35 a</td>
<td>2.91±13.3±2</td>
<td>2.83±115.3±8</td>
<td>1.97±142.28 ±</td>
</tr>
<tr>
<td>Tri glyceride Mmol/L</td>
<td>102.44± 3.12 b</td>
<td>290.21± 4.15c</td>
<td>181.12 ± 4.87c</td>
<td>154.27± 1.59a</td>
<td>167.25± 2.19b</td>
<td>193.32± 2.98 b</td>
</tr>
</tbody>
</table>

References

دور حمض الفوليك في التقليل من تأثير فالبروات الصوديوم على دماغ ومشيمة حوامل الفئران

مهام خلف الجبوري1 - أمنة جاسم الحياني2

1 قسم علوم الحياة - كلية العلوم - جامعة الموصل - الموصل - العراق
2 فرع العلوم التمريضية الأساسية - كلية التمريض - جامعة نينوى - الموصل - العراق

تبحث هذه الدراسة في تأثير فالبروات الصوديوم على أدبية الأجنة ومشيمة الفئران الحوامل، وتقييم تأثير العلاج المتزامن بحمض الفوليك. تم تقسيم 30 أنثى فأر حامل إلى 6 مجموعات (5 فئران كل مجموعة) على النحو التالي:

- مجموعة الفئران الصوديوم مع الفوليك (64 ملغم/كغم).
- مجموعة الفئران الصوديوم (64 ملغم/كغم).
- مجموعة الفئران الفوليك (64 ملغم/كغم).
- مجموعة الفئران السيطرة (بدون معالجة).
- مجموعة الفئران الفوليك وварين (64 ملغم/كغم).
- مجموعة الفئران الصوديوم والفوليك (64 ملغم/كغم).

استخدمت كل الفئراندوالحصانين في الفئران والجراحة البطنية، وبعدها تم زرع الإفرازات في فم الفئران. ثم أجريت الإفرازات على الأشعة تحت الحمراء لمتابعة الوضع. نلاحظ تغيرات في مستويات كلوتاثايون، والكولسترول، والدهون الثلاثية، مع ارتفاع في مستويات السوبروكسيد ديسموتيز. نستنتج من هذه الدراسة أن الشحنات الانتقائية له تأثيرات إيجابية في التقليل من الأسئلة السلبية للصوديوم فالبروات في دماغ الفئران ومشيمة الفئران الحوامل.

المصطلحات المفتاحية: حمض الفوليك، الدماغ، فالبروات الصوديوم، المشيمة، التغيرات النسيجية.