Impact of *Spirulina platensis* as a Dietary Supplement on Growth Performance, Blood Biochemical Parameters, and Expression of Growth-Related Genes in Nile Tilapia (*Oreochromis niloticus*)

Hesham Abozaid\(^1\), Ali S. M. Elnady\(^1\), Dalia M. Aboelhassan\(^2\), Hayam Mansour\(^2\), Abd Elmeged Abedo\(^1\), Hashem M. Abdelrahman\(^1\), Inas S. Ghaly\(^2\), Hasnaa A. Radwan\(^2\), Wafaa T. Abbas\(^3\), Ibrahim M. Farag\(^2\)

\(^1\)Department of Animal Production, Agricultural and Biology Institute, National Research Centre, Dokki, Giza, 12622, Egypt.
\(^2\)Department of Cell Biology, Biotechnology Research Institute, National Research Centre, Giza, Dokki, Giza, 12622, Egypt.
\(^3\)Department of Hydrobiology, Veterinary Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt.

The present investigation was designed to verify the effect of using *Spirulina platensis* (*Sp*) on growth performance, blood biochemical parameters, and expressions of growth hormone (GH), growth hormone receptor (GHR), insulin-like growth factor1 (IGF-1), insulin-like growth factor 2 (IGF-2), and myostatin (MSTN) genes in Nile tilapia. A total of 96 fingerlings (12 ± 0.2 g) were randomly allocated into eight groups, each containing 12 fish, and fed diets containing 0%, 1% (10 g), 2% (20 g), and 3% (30 g) *SP*/kg for 8 weeks. Significant improvements in growth were observed in the 1% SP group, with the best feed conversion rate at 1.09. Biochemical parameters, including serum protein, globulin, liver enzymes (ALT and AST), cholesterol, and glucose concentrations, were analyzed using a spectrophotometer for calorimetric analysis. Higher serum protein and globulin levels were observed in the 1% SP group compared to the control. RT-PCR analysis indicated elevated GH expression in the brain and muscles, along with increased IGF-1 and IGF-2 levels observed in the liver and muscle tissues of the 1% SP group compared to the control and other treatments. However, there was a positive correlation between the 1% SP diet and enhanced MSTN mRNA levels in muscle tissues. Except for higher ether extract (EE) in the 2% SP treatment, there were no significant changes in fish survival or body composition. Overall, this study recommends utilizing 1% SP as a dietary supplement to improve growth, feed utilization, biochemical parameters, and growth-related gene expressions in Nile tilapia.

Keywords: Spirulina, Nile tilapia, growth performance, blood biochemical parameters, growth-related gene expressions.

Introduction

The increasing demand for aquaculture as a primary source of animal protein required for human sustenance [1, 2] has intensified due to the limited biological capacities of natural fish resources and the escalating challenges associated with environmental stressors [3]. Tilapia aquaculture has witnessed exceptional growth in the last few decades [4], with an annual production increase of approximately 13.5% [5]. The rapid growth in production necessitates higher costly inputs, with feeding accounting for about 70% of the total production cost [6]. Consequently, the quest for innovative functional feed supplements remains a significant challenge in tilapia production.

Spirulina platensis (*Sp*), a photosynthetic filamentous blue-green microalga, harbors diverse biological activities and possesses highly valuable protein content, essential amino acids, vitamins, beta-
carotene, and various pigment substances [7]. While fish meal and fish oil are known to be nutritious and easily digestible feed sources for farmed fish, their elevated prices and costs make them less favorable [8]. Hence, the search for natural and alternative sources of nutrition to replace expensive animal-derived proteins in fish diets is imperative.

Spirulina has emerged as a significant plant protein source capable of replacing animal proteins in fish feed [9]. It boasts high-quality protein content containing all essential amino acids and is rich in bioactive components such as carotenoids, vitamins, essential fatty acids, minerals, phycocyanin, and antioxidative pigments, displaying anti-inflammatory and antioxidant properties [10, 11].

Additionally, supplementing fish diets with Sp may stimulate the immune system by increasing lysozyme, phagocyte, and skin mucus bactericidal activities, white blood cell count, and regulating cytokine gene expression crucial for the immune system in tilapia leukocytes, acting as signaling molecules [12, 13]. Sp is also recognized for its antimicrobial properties, with its ethanol and methanol extracts being effective against various fish pathogens [14, 15]. Furthermore, the inclusion of Spirulina as a feed additive in fish diets has shown improvements in growth rate, carcass quality, and physiological responses to diseases and stress across various fish species [16, 17].

Various studies have highlighted the positive effects of Sp on fish production, notably influenced by the quantity used as feed additives in aquaculture. Some studies have demonstrated significant improvements in growth performance even with small amounts of Sp in diets [18]. This impact is attributed to the high protein content (about 70%) and lipids (7-16%) in its dry weight [19]. Considering its nutritional value, Sp is considered a potential food source for both animals [20] and humans [21], making it an excellent nutrient and energy source for a wide range of animals [22, 23].

Consequently, this study was conducted to assess the impact of different concentrations of dietary Spirulina on Nile tilapia (O. niloticus) fingerlings, focusing on growth performance, feed utilization, body composition, blood biochemical parameters, and the expression of growth-related genes, including GH, GHR, IGF-1, IGF-2, and MSTN."

Material and Methods

Fish and experimental protocol

Ninety-six mono-sex fingerlings (12 ± 0.15 g) were randomly distributed into four treatments, each with two replicates. The subgroups were housed in separate 50 L aquariums within a closed water recirculation system. Daily monitoring of water parameters was conducted after feeding [24]. The experimental design included four diets formulated with varying levels of Sp: control T1 (0% SP), T2 (1% SP), T3 (2% SP), and T4 (3% SP), as detailed in Table 1. The proximate composition of the diets and the chemical composition of Sp are presented in Table 2. Ingredients were ground, blended, pelleted through a 2 mm die, and stored at -30°C. During the initial 7 days, fish were acclimated to the control diet. Subsequently, they were fed the experimental diets by hand twice daily for 56 days at a rate of 3% of their body weight. Fish weights and feed intake were recorded biweekly. At the end of the 56-day period, measurements were taken for live weight gain, feed efficiency, growth performance parameters, and feed nutrient utilization.

Growth performance and feed utilization

The study evaluated various growth performance metrics and feed utilization parameters. Weight gain (WG), specific growth rate (SGR), and feed conversion ratio (FCR) were calculated using established formulas [26, 27]. WG was determined by subtracting the initial weight (Wt) from the final weight (WT). SGR% was calculated using the natural log of WT and Wt divided by the experimental period. Feed intake (FI) was maintained at 3% of body weight daily, and FCR was computed as dry matter intake divided by total gain. Protein efficiency ratio (PER) was determined by dividing total gain by protein intake, following Stuart and Hung's methodology [28]. Protein retention efficiency (PRE) was calculated according to Zehra and Khan [29], expressed as Protein gain divided by Protein intake multiplied by 100.

For further analysis, three fish per treatment were randomly selected and anesthetized using a clove-essence solution. Blood samples were collected from the caudal vein using heparinized syringes and centrifuged to obtain serum, which was stored at -20°C for subsequent chemical analysis.

Chemical body composition analysis

Chemical body composition analysis, including assessment of moisture, protein, lipid, ash, carbohydrate, etc., in fish, was conducted following the guidelines outlined in AOAC [30].
TABLE 1. Feed formulation and proximate chemical analysis of the experimental diets

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Control</th>
<th>1% SP</th>
<th>2% SP</th>
<th>3% SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein concentrate</td>
<td>17</td>
<td>16</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>Soybean meal</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Corn</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>Wheat bran</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>SP* (powder)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Oil</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Vit. & Min.**</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Chemical composition, % on dry matter basis

<table>
<thead>
<tr>
<th>Component</th>
<th>Control</th>
<th>1% SP</th>
<th>2% SP</th>
<th>3% SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>OM</td>
<td>87.53</td>
<td>87.71</td>
<td>87.71</td>
<td>87.88</td>
</tr>
<tr>
<td>CP</td>
<td>27.42</td>
<td>28.22</td>
<td>28.24</td>
<td>28.50</td>
</tr>
<tr>
<td>CF</td>
<td>11.45</td>
<td>11.03</td>
<td>11.59</td>
<td>11.63</td>
</tr>
<tr>
<td>EE</td>
<td>3.94</td>
<td>3.90</td>
<td>3.93</td>
<td>3.96</td>
</tr>
<tr>
<td>NFE***</td>
<td>44.72</td>
<td>44.56</td>
<td>43.95</td>
<td>43.79</td>
</tr>
<tr>
<td>Ash</td>
<td>12.47</td>
<td>12.29</td>
<td>12.29</td>
<td>12.12</td>
</tr>
<tr>
<td>GE (kcal/100g)****</td>
<td>415.46</td>
<td>417.25</td>
<td>417.44</td>
<td>418.7</td>
</tr>
</tbody>
</table>

*SP: Spirulina platensis (powder)
**Vit. & min. mixture/kg premix: Vitamin D3, 0.8 million IU; A, 4.8 million IU; E, 4 g; K, 0.8 g; B1, 0.4 g, riboflavin, 1.6 g; B6, 0.6 g, B12, 4 mg; pantothenic acid, 4 g; Nicotinic acid, 8 g; folic acid, 0.4 g; biotin, 20 mg; Mn, 22 g; Zn, 22 g; Fe, 12 g; Cu, 4 g; I, 0.4 g; selenium, 0.4 g and Co, 4.8 mg.
***Nitrogen free extract (NFE) = 100 - (CP + EE + CF + ash).
****GE (Gross energy value) was calculated from their chemical composition, using the factors 5.6, 9.45, 4.00 and 4.00 (k cal/g) for protein, fat, fiber and NFE, respectively [25].

TABLE 2. Chemical composition of Spirulina platensis

<table>
<thead>
<tr>
<th>Component</th>
<th>Content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>9.00</td>
</tr>
</tbody>
</table>

Component, % on DM basis

<table>
<thead>
<tr>
<th>Component</th>
<th>Content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OM</td>
<td>85.35</td>
</tr>
<tr>
<td>CP</td>
<td>50.21</td>
</tr>
<tr>
<td>EE</td>
<td>2.24</td>
</tr>
<tr>
<td>CF)</td>
<td>10.92</td>
</tr>
<tr>
<td>NFE</td>
<td>21.98</td>
</tr>
<tr>
<td>Ash</td>
<td>14.65</td>
</tr>
</tbody>
</table>
Biochemical analysis

Blood samples were obtained from the fish's caudal vein using a 3 ml syringe after fish anesthesia with clove oil (0.5 ml L−1). The collected samples were transferred into clear, dry centrifuge tubes and left at room temperature until clotting occurred. Subsequently, the tubes underwent centrifugation at 3000 rpm for 15 minutes to separate the serum, which was stored at -80°C until further biochemical analysis.

Biochemical analyses encompassed the estimation of serum total proteins [31], albumin [32], globulin (calculated by subtracting albumin from total protein concentrations), alanine aminotransferase (ALT), aspartate aminotransferase (AST) [33], cholesterol [34], and glucose concentrations [35]. Commercial biochemical kits (Spectrum-diagnostics, Egypt) were used for these assays. Each biochemical parameter was analyzed calorimetrically based on the manufacturer's instructions using an Agilent Cary UV-Vis spectrophotometer (100/300 Series).

Gene expression analysis

RNA extraction

Total RNA extraction was performed from muscle, liver, and brain tissues following the manufacturer's protocol outlined in the TRIzol® reagent kit (Invitrogen, Germany). Initially, 50 mg of tissue was individually homogenized in 750 μL of TRIzol® reagent and incubated at room temperature for 5 minutes to facilitate the dissociation of nucleoprotein complexes within the TRIzol solution. Subsequently, 140 μL of chloroform was added to the homogenized samples, vigorously shaken, and then centrifuged at 12,000 xg for 15 minutes at 4°C.

The resulting RNA present in the aqueous phase was carefully separated, precipitated by adding 600 μL of 100% isopropyl alcohol, and centrifuged at 12,000 xg for 10 minutes at 4°C. The RNA pellet obtained was washed with 70% DEPC ethanol and dissolved in RNase-free water at 60°C. RNA concentration and purity were determined using a nanodrop spectrophotometer (Thermo Scientific, Rockford, IL, USA) with an absorbance ratio (260/280 nm) ranging between 1.8 and 2.1 for all samples.

To eliminate any potential DNA contamination, all RNA samples underwent DNase I treatment (Invitrogen) before storage at -80°C.

Complementary DNA synthesis

The isolated RNA from the tissues was utilized for the synthesis of complementary DNA (cDNA) using the oligo (dT)15 primer provided in the maxime RT PreMix Kit (iNtRON Biotechnology, Korea, Cat. No. 25081/96 tubes). The reaction volume was set at 20 μL as per the kit instructions. The reverse transcription (RT) reaction took place at 45°C for 60 minutes, followed by RTase inactivation at 95°C for 5 minutes. The synthesized cDNA was stored at -20°C until required for DNA amplification [36, 37].

Determination of mRNA expression using Real-Time PCR

To determine the mRNA expression levels of GH, GHR, IGF-1, IGF-2, and MSTN genes, Real-Time PCR (RT-PCR) was performed using Fast SYBR Green Master Mix (Topreal TM PCR 2X pre Mix, SYBR green with low ROX, enzynomics Korea). The final primer concentration was 500 pmol, and the reaction volume comprised 20 μL [2 μL of cDNA, 1 μL of each Forward and Reverse primer for the aforementioned genes (Table 3), 10 μL of SYBR green master mix, and 7 μL of water]. The Step One Plus instrument (Agilent stratagene, America, Cat. No. 25081/96 tubes). The reaction volume was set at 20 μL as per the kit instructions. The reverse transcription (RT) reaction took place at 45°C for 60 minutes, followed by RTase inactivation at 95°C for 5 minutes. The synthesized cDNA was stored at -20°C until required for DNA amplification [36, 37].

Ethical approval

This study was approved by the Ethics of Medical Research Committee of the National Research Centre, Al Buhouth St., Dokki, Cairo, Egypt (Approval Date: 6.7.2023 / Approval No: 074130723).

Statistical analysis

Statistical analyses were performed, presenting data as mean ± SE. One-way ANOVA was utilized to assess the effects of SP on chemical body composition, gene expression, and biochemical parameters, utilizing SAS [44] (version 17). Duncan’s multiple range test was employed to compare mean differences (at a significance level of 5%) [45].

Results

Growth Performance and Feed Utilization

Spirulina platensis supplementation at 1% (T2) significantly influenced the growth of Nile tilapia compared to control (0% SP), 2%, and 3% SP (Table 4). A substantial increase (P < 0.05) in body weight gain (BWG) occurred in T2 (2.96±0.56 g) throughout the experimental period, contrasting the decrease observed in T1, T3, and T4 groups (1.25±0.15 g).
2.4±0.06 g, and 1.53±0.02 g, respectively; P < 0.05). T2 also exhibited the highest protein efficiency ratio (PER) at 36.5 compared to T1, T3, and T4 (24.95, 22.00, and 21.90, respectively; Table 4).

A significant increase in feed conversion ratio (FCR) and specific growth rate (SGR) was observed in T2, recording the highest values of 1.09±0.01 and 1.63±0.01, respectively (P < 0.05). Conversely, the lowest FCR value was noted in T4. No significant differences were observed in survival rates (SR) among treatments. Importantly, no statistically significant variations were observed in fish body composition except for ether extract (EE) content in the T3 (2% SP) (Table 5).

TABLE 3. Primer sequences used for gene expression analysis of genes related to growth

<table>
<thead>
<tr>
<th>Target gene</th>
<th>Accession No</th>
<th>Primer Sequences 5′ to 3′</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>GH</td>
<td>M26916</td>
<td>F - CTGTCTGTCTGTCTGTCGTCGT
R - AGAGGGAGCCACCCCAACAC</td>
<td>Rentier-Delrue et al. [38]</td>
</tr>
<tr>
<td>GHR</td>
<td>EF052862</td>
<td>F - CGACCCAGAACACCACC
R - GTCTCTGAATGAGGGAAAG</td>
<td>Ma et al. [39]</td>
</tr>
<tr>
<td>IGF-1</td>
<td>EU272149</td>
<td>F - CCCGAACCTCCTCGACTTGA
R - CTCAGCCAGAACAGACAAAAA</td>
<td>Wang et al. [40]</td>
</tr>
<tr>
<td>IGF-2</td>
<td>EU272150</td>
<td>F - CCCGTGATCAGCTTCCTCTA</td>
<td>Wang et al. [40]</td>
</tr>
<tr>
<td>MSTN</td>
<td>AF197193</td>
<td>R - GCAAAAGTTTCCGGTGGTGA
F - ACCCGCCCCCCAATCTGA
R - ATCTGGGACGTTGGCTCTT</td>
<td>Rodgers et al. [41]</td>
</tr>
<tr>
<td>*β-actin</td>
<td>EU887951</td>
<td>F - ACCACACAGTGCCCCATC
R - CAGGTCCAGACGCAGGAT</td>
<td>Monteiro et al. [42]</td>
</tr>
</tbody>
</table>

TABLE 4. Mean growth performance and feed utilization ± SE of Nile tilapia in different treatments at the end of 56 days experiment

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Control</th>
<th>1% SP</th>
<th>2% SP</th>
<th>3% SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>IW</td>
<td>12.0±0.5a</td>
<td>12.0±1.8a</td>
<td>12.0±1.3a</td>
<td>12.0±0.2a</td>
</tr>
<tr>
<td>FW</td>
<td>17.8±8.0ab</td>
<td>25.8±29.5c</td>
<td>19.1±3.0b</td>
<td>16.9±14.7a</td>
</tr>
<tr>
<td>WG/day</td>
<td>1.25±0.15b</td>
<td>2.96±0.56c</td>
<td>2.41±0.06b</td>
<td>1.53±0.02c</td>
</tr>
<tr>
<td>FCR</td>
<td>1.26±0.02b</td>
<td>1.09±0.01a</td>
<td>1.30±0.01b</td>
<td>1.40±0.02c</td>
</tr>
<tr>
<td>SGR</td>
<td>1.28±0.01b</td>
<td>1.63±0.01a</td>
<td>1.38±0.01b</td>
<td>1.38±0.0b</td>
</tr>
<tr>
<td>PER</td>
<td>24.9±2.9b</td>
<td>36.5±10.8b</td>
<td>22.0±1.1b</td>
<td>21.90±5.5b</td>
</tr>
<tr>
<td>SR</td>
<td>88.9±5.6a</td>
<td>87.7±4.8a</td>
<td>88.9±2.8a</td>
<td>90.7±4.8a</td>
</tr>
</tbody>
</table>

TABLE 5. Body composition of Nile tilapia (O. niloticus) in different treatments

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dry matter</th>
<th>Component, % on DM basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>29.5±0.3a</td>
<td>52.1±2.6a
24.5±2.6b
12.9±0.5a</td>
</tr>
<tr>
<td>SP (1%)</td>
<td>28.8±1.3a</td>
<td>50.0±2.5a
26.6±4.9b
11.8±1.6a</td>
</tr>
<tr>
<td>SP (2%)</td>
<td>26.8±1.9a</td>
<td>49.2±0.3a
29.5±0.1a
11.5±1.5a</td>
</tr>
<tr>
<td>SP (3%)</td>
<td>28.3±0.3a</td>
<td>52.2±2.3a
26.5±2.0b
11.4±0.8a</td>
</tr>
</tbody>
</table>

Biochemical analyses

The T2 group (1% SP) exhibited a significant (P < 0.05) increase in serum protein and globulin levels compared to the control. Conversely, the T3 (2% SP) and T4 (3% SP) groups showed significantly decreased levels of these parameters compared to the control. Albumin concentration remained consistent across all groups (P > 0.05). In terms of liver function (AST and ALT), the highest values were observed in the T3 group (P < 0.05), followed by the T2 group, compared to the control. Serum glucose concentration significantly increased in the T3 group compared to both the control and the other treatment groups (P < 0.05). However, cholesterol concentration remained unchanged across all treated groups (P > 0.05) (Table 6).
TABLE 6. Blood biochemical parameters of Nile tilapia (O. niloticus) fed different levels of Spirulina

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control</th>
<th>1% SP</th>
<th>2% SP</th>
<th>3% SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total protein (g/dl)</td>
<td>5.38±0.05</td>
<td>7.03±0.04</td>
<td>3.52±0.05</td>
<td>2.73±0.28</td>
</tr>
<tr>
<td>Albumin (g/dl)</td>
<td>1.63±0.30</td>
<td>1.86±0.19</td>
<td>1.79±0.03</td>
<td>1.40±0.13</td>
</tr>
<tr>
<td>Globulin (g/dl)</td>
<td>3.75±0.26</td>
<td>5.17±0.19</td>
<td>1.73±0.06</td>
<td>1.33±0.20</td>
</tr>
<tr>
<td>Glucose (mg/dl)</td>
<td>55.21±6.45</td>
<td>78.86±2.74</td>
<td>80.55±13.9</td>
<td>140.7±9.13</td>
</tr>
<tr>
<td>Cholesterol (mg/dl)</td>
<td>164.2±10.5</td>
<td>142.0±11.46</td>
<td>143.8±14.62</td>
<td>150.0±10.75</td>
</tr>
<tr>
<td>AST (Unit/l)</td>
<td>131.8±4.25</td>
<td>114.3±7.04</td>
<td>142.1±5.01</td>
<td>182.6±11.13</td>
</tr>
<tr>
<td>ALT (Unit/l)</td>
<td>34.16±0.78</td>
<td>36.36±0.90</td>
<td>44.08±1.86</td>
<td>45.30±1.40</td>
</tr>
</tbody>
</table>

Gene expression analysis

Gene expression in brain tissues

The expression of the GH gene in brain tissues significantly increased in fish fed a diet containing 1% Spirulina compared to the control group (0% SP) and those fed with 2% SP (P < 0.05) and 3% SP (P < 0.01). Moreover, a notable rise in GH gene expression (P < 0.05) was also evident in the 2% Spirulina group when compared to both the control and 3% SP groups (Figure 1).

Gene expression in liver tissues

The expressions of the IGF-1 and IGF-2 genes in liver tissues were significantly higher (P < 0.01) in fish fed 1% Spirulina compared to the control, 2% SP (P < 0.05), and 3% SP (P < 0.01) groups. Additionally, both IGF-1 and IGF-2 mRNA levels exhibited a significant increase (P < 0.05) in the group fed with 2% SP in comparison to the control and 3% SP groups (Figure 2).

Gene expression in muscle tissues

In muscle tissues, the expressions of GH, GHR, IGF-1, IGF-2, and MSTN genes were evaluated (Figure 3). The expression of the GH gene significantly increased (P < 0.05) in fish fed a diet containing 1% SP compared to both the control group (0% SP) and other Spirulina treatments (2% and 3% SP). Similarly, the level of GHR mRNA showed a significant (P < 0.01) increase in the 1% SP group in comparison to the control, 2% SP (P < 0.05), and 3% SP (P < 0.01) groups. Notably, the 2% SP group displayed a significant (P < 0.05) increase in GHR gene expression compared to the control and 3% SP group.

Regarding the expression of the IGF-1 gene, significant elevation (P < 0.001) was observed due to the 1% SP treatment compared to the control, 2% SP (P < 0.05), and 3% SP (P < 0.01) treatments. Additionally, up-regulation (P < 0.01) of IGF-1 was detected in the 2% SP group compared to the control and 3% SP (P < 0.05) groups.

The expression level of the IGF-2 gene significantly increased (P < 0.01) in the 1% SP group compared to the control, 2% SP (P < 0.05), and 3% SP (P < 0.01) groups. Likewise, the 2% SP group showed a significant (P < 0.05) increase in the IGF-2 mRNA level compared to the control and 3% SP groups.

Regarding mRNA expression for the MSTN gene, the highest expression level (4.70) was observed in fish fed 3% SP, while the lowest expression level (0.93) was found in the 1% SP group. Statistical analysis revealed significant differences between the 3% SP treatment and each of the control (P < 0.01), 1% SP (P < 0.01), and 2% SP (P < 0.05) treatments. Furthermore, treatment with 2% SP led to a significant up-regulation (P < 0.05) of MSTN compared to the control and 1% SP treatments.
Fig. 1. Relative gene expression levels of GH gene were determined by real-time PCR in brain tissues of fish fed with four Spirulina diets (0%, 1%, 2%, and 3%).

Fig. 2. Relative gene expression levels of IGF-1 and IGF-2 genes were determined by real-time PCR in liver tissues of fish fed with four Spirulina diets (0%, 1%, 2%, and 3%).

Fig. 3. Relative gene expression levels of GH, GHR, IGF-1, IGF-2, and MSTN were determined by real-time PCR in muscle tissues of fish fed with four Spirulina diets (0%, 1%, 2%, and 3%).
Discussion

Nile tilapia (O. niloticus) represents an adaptable and rapidly growing species in various aquaculture systems, with profound implications for human nutrition and economic welfare [12, 46]. The utilization of SP in tilapia diets has been a subject of interest in aquaculture due to its potential as a feed additive or protein source. This study investigated the effects of SP on the growth performance, biochemical parameters, and gene expression in Nile tilapia.

Effects of Spirulina on growth performance

In this study, the highest body weight gain was observed in T2 (1% SP) compared to the control group and the other groups. This result is consistent with Amer [47], who reported that 1% SP was the best level among four levels (0.0, 0.5%, 1%, and 1.5%) in Nile tilapia. Belal et al. [48] also found that adding 1% SP to tilapia diets led to significant improvement of average weight gain (AWG), specific growth rate (SGR), and feed conversion ratio (FCR) compared to the control. Güroy et al. [49] observed that adding 2.5% SP to yellow tail cichlid fish diet increased the total egg production significantly (P<0.05) compared to the control diet. Ramakrishnan et al. [50] reported enhancement of SGR, FCR, and AWG by using Spirulina levels ranging from 1 to 3% in common carp diet.

However, other investigations used SP as a protein source and found different results. Velasquez et al. [51] found improved growth performance of Nile tilapia fed diets containing 30% Spirulina, and reported that up to 60% of the alga did not induce any adverse effects on growth performance. El-Sheekh et al. [52] observed enhanced overall growth performance in hybrid red tilapia (O. niloticus X O. mossambicus) fed Spirulina up to 75% in fish diet. Adel et al. [17] showed increased SGR and AWG in great sturgeon (Huso huso) fed 10% Spirulina-enriched feed.

On the other hand, some studies reported no positive effects or even negative effects of Spirulina on growth performance. Olvera-Novoa et al. [53] demonstrated that tilapia fed diet supplemented with Spirulina ranging from 20 to 100% of protein source did not show any improvement in growth performance. Ungsethaphand et al. [18] showed no growth enhancement in hybrid red tilapia fed Spirulina ranging from 5 to 20%. Adel et al. [17] detected no increases in SGR and AWG in Huso huso fish at 2.5% of Spirulina in fish diet. El-Sayed [54] found no significant differences for growth performance between silver sea bream fed 50% Spirulina-enriched diet and those fed control diet, and reported adverse effect on growth performance when the Spirulina level was 75%.

Effects of Spirulina on Biochemical Parameters

Biochemical analyses are important tools to evaluate the physiological status of fish, especially after adding food additives [55]. Liver enzymes (ALT and AST) are biomarkers of hepatic damage and liver function. Total serum protein, albumin, and globulin play essential roles in immunological and nutritional aspects [56]. Moreover, blood glucose level serves as stress-sensitive indicator. Fish exposed to external stressors release hormones such as adrenaline and cortisol, triggering glycogenesis and glycogenolysis pathways, consequently elevating glucose production [57]. In our experimental results, significant alterations were observed in the levels of ALT, AST, total serum protein, and blood glucose across different Spirulina supplementation levels. These changes indicate a potential impact of Spirulina on the liver function, immune system, and stress response of Nile tilapia, shedding light on the physiological changes induced by Spirulina-based diets in aquaculture settings.

Gene expression analysis

The growth trait in farmed fish is intricately regulated by a network of growth-related genes, including somatotropic axis-related genes like GH, GHR, IGF-1, IGF-2, and MSTN, which play pivotal roles in various physiological processes [46, 58-61]. Notably, our study elucidated the modulation of these genes in Nile tilapia (O. niloticus) in response to dietary Spirulina supplementation.

Recent advancements in molecular genetics have emphasized the importance of identifying optimal gene expression levels that govern growth traits in fish. Our findings are in line with studies demonstrating differential regulation of growth-related genes under varying nutritional conditions. For instance, fish fed a 1% Spirulina diet showed significant improvements in GH, IGF-1, and IGF-2 expressions in brain, liver, and muscle tissues compared to the control and higher Spirulina-fed groups [62-66].

Interestingly, while most genes showed upregulation with Spirulina, the MSTN gene exhibited a downregulation, indicating its role as a negative regulator of skeletal muscle development [64]. Similar observations were reported in European sea bass and rainbow trout, where cytokine gene expressions were notably affected by varied Spirulina levels in the diet [65, 67].

However, our study noted an intriguing increase in MSTN gene expression with escalating Spirulina levels in the diet, contrasting previous reports [65]. Such disparities highlight the complexity of gene regulation influenced by dietary components.
Notably, the nutritional content and bioactive components of Spirulina may pose challenges despite its potential as a growth promoter or protein source. While studies have highlighted the benefits of microalgae in reinforcing the immune system and promoting growth in certain fish species, excessive amounts or specific formulations can hinder growth [68-74].

Our experimental results mirrored previous findings that increasing Spirulina levels beyond a certain threshold, from 1% SP to 2% or 3% SP in diets, negatively affected growth parameters. These observations, evident in other fish species, highlight the intricate balance required when incorporating microalgae into fish diets to avoid growth inhibition [72-74]. These insights underscore the significance of meticulous dietary management to harness the potential benefits of Spirulina while avoiding adverse effects on growth in tilapia and other fish species.

Conclusion

The study demonstrates that incorporating Spirulina platensis at a 1% level in Nile tilapia diets significantly enhances growth performance, gene expression, and biochemical parameters. These findings underscore Spirulina’s potential as a beneficial feed additive or protein source for O. niloticus fingerlings in aquaculture. However, exceeding this optimal level resulted in detrimental effects on certain physiological aspects. Thus, careful optimization of Spirulina concentrations in fish diets is crucial to leverage its benefits effectively while avoiding adverse impacts.

Competing Interests

The authors declare that they have no financial interests.

Funding statement:

There’s no financial/personal interest or belief that could affect the manuscript objectivity.

Acknowledgement

We acknowledge the National Research Centre-Giza, Egypt, for providing the equipment and laboratories that we used to perform this work.

References

1. FAO (Food and Agriculture Organization). Cultured Aquatic Species Information Programme Oncorhynchus mykiss. Food and Agriculture Organization, Fisheries and Aquaculture Department, FAO Publication series (2018).

4. FAO (Food and Agriculture Organization). Climate change implications for fisheries and aquaculture: Summary of the findings of the intergovernmental panel on climate change fifth assessment report, by A.Seggel, & C.De Young. FAO Fisheries and Aquaculture Circular No. 1122. Rome (2016).

Egypt. J. Vet. Sci. Vol. 54, No. 6 (2023)

IMPACT OF Spirulina platensis AS A DIETARY SUPPLEMENT ON GROWTH ...

Egypt. J. Vet. Sci. Vol. 54, No. 6 (2023) 1277

Táharrr مستويات مختلفة من الاسبرولينا كإضافات غذائية على أداء النمو والتحليل البيوكيميائي للدم

هشام أبو زيد1، على سليمان محمد النادي، داليا محمد ابوزيد2، هيا منصور، عبد المجيد عبيد3.

1 قسم الانتاج الحيواني - معهد البحوث الزراعية والبيولوجية - المركز القومي للبحوث - الدقي - الجيزة - 12622 - مصر.
2 قسم بيوطولوجيا الخلية - معهد بحوث التقنيات الحيوية - المركز القومي للبحوث - الدقي - الجيزة - 12622 - مصر.
3 قسم الأحياء المائية - معهد البحوث البيطرية - المركز القومي للبحوث - الدقي - الجيزة - 12622 - مصر.

يعتبر طحالب سبيرولينا بلاتنسيس (Sp.) مصدرًا طبيعيًا ممتازًا للمغذيات البديلة التي يمكن أن تحل محل البروتينات المشتقة من الحيوانات في النظام الغذائي للأسمال. المستوي المناسب من Sp. قد يعزز السمات المرتبطة بالنمو في النظام الغذائي للأسماك. هذه الدراسة قصدت تأثير استخدام مستويات مختلفة من الاسبرولينا (1%, 2%, 3%) كمحفز للنمو، ودراسة تأثيرها على معدلات النمو وتركيب الدم والتعبيرات الجينية المرتبطة بالنمو مثل (GH، GHR، IGF1، IGF2، MSTN مثلاً). تم توزيع الأسماك بمعدل 96 سمكة وحيدة الجنس بمتوسط وزن (12 ± 0.2 جم) عشوائياً على ثمانية مجموعات تم تقسيم كل واحدة على حوضين كل حوض يحتوي على 12 سمكة سعة الحوض 50 لتر لمدة 8 أسابيع. وقد تم قياس اجتماعات النمو والافتراض من العلف في المعاملات (15% من الأسمال). وvette على نسبة كفاءة تحويلية إلى 1.09 ± 0.26، 1.40 ± 1.30، 1.12 ± 0.26، 1.09 ± 0.26، 1.12 ± 0.26، 1.12 ± 0.26 في المعاملات، حيث ارتفع مستوى البروتين Sp. على التوالي. وقد سجلت الزيتات البيوكيميائية في المعاملات (P<0.05) من هذين المراحلين خلال المعاملات الأخرى، في حين إنخفض التركيز في المعاملة الثالثة والأربعة معنويًا (P>0.05) بالإضافة إلى ذلك أظهرت النتائج أن الأسمال التي تم تغذيها بنسبة 1% من الأسبرولينا تمتلك نمطًا كبيرًا في التعبير الجيني لـ GH في المخ وIFG1 في الكبد وIGF2 في الكبد وIFG1 والمادة في الياقات معنويًا (P<0.05). في الأنسجة العضلية مما يوضح أن هذه المعاملة كانت أفضل من المعاملات الأخرى.

الكلمات الدالة: سبيرولينا، البلطي النيلي، أداء النمو، التحاليل البيوكيميائية، التعبيرات الجينية المرتبطة بالنمو.