Prevalence and Characterization of *Streptococcus pyogenes* Isolates From Buffalo Milk, Cattle Milk and Human Milkers. With M Protein Serotyping

Mohammed Darwish Mohammed*, Wagih A. Gad-Elsaid†, Sabry D. Morgan‡, Mona M. Elshabrawy§ and M.E. Hashad‡

1Department of Microbiology and Immunology, veterinary research institute, NRC, Cairo, Egypt.
2Department of Microbiology and Immunology, Faculty of veterinary medicine, Cairo University, Cairo, Egypt.
3Department of Milk hygiene, Faculty of veterinary medicine, Cairo University, Cairo, Egypt.

*Corresponding author: Mohammed Darwish, E-mail: mdarwish2005@yahoo.com, Tel.: 01284385688
(Received 03/06/2023, accepted 08/08/2023)
DOI: 10.21608/EJVS.2023.212206.1513

A TOTAL of 440 raw milk samples (apparently normal) were collected from different animal farms at Sohag governorate (368 from cows and 72 from buffaloes) and 55 throat swap samples collected from human milkers. All the *Streptococcus pyogenes* (*S.pyogenes*) isolates were identified by bacitracin sensitivity test, PCR detection targeting spy1258 gene, and positive group A (GAS) Lancefield agglutination kit. The isolates from different sources had been typed serologically for M protein typing. Five different serotypes, M1, M2, M3, M4, and M6, were found to be indicated in different *S.pyogenes* isolates, while 30 isolates found to be untypeable. Some isolates were underwent Polymerase Chain Reaction (spy1258) for confirmation and comparison between animal and human isolated strains. In addition antibiogram resistance was determined for eight different antibiotics. The mechanisms of the resistance were identified phenotypically by the disc diffusion method. Resistance testing indicated highly resistance for mostly used antibiotics as erythromycin and clindamycin and found to be complete or intermediate sensitive to penicillin-G, cefuroxime, ampicillin /sulbactam and cefoperazone. *S. pyogenes* are not only associated with human infection only but it could be transmitted to animals. According to M protein serotyping M6 is the most predominant among animal and human isolates.

Keywords: Beta haemolytic streptococci, Group (A) streptococci, Reverse zoonosis.

Introduction

Different species of streptococci are responsible for a variety of many bacterial diseases in both animals and humans. Some examples of those conditions in human like arthritis, meningitis, neonatal sepsis, and pneumonia. While in animals they causes mainly mastitis (clinical and sub clinical) [1]. *S.pyogenes* is identified as group (A) streptococci (GAS). It has (N- acetyl glucosamine) linked with rhamanose polymer [2]. *S.pyogenes* could cause infection in humans through colonization after adhesion to mucosal surface epithelial cells lined to the host upper respiratory system [3]. Also pathogenicity of *S.pyogenes* is clear in other mild infectious conditions as in pharyngitis and mild skin infections. As in severe conditions like in Streptococcal toxic shock syndrome and in necrotizing fasciitis. Rate of infection annually found to be more than 600 million infections [4]. Many virulence factors were found to be associated with GAS infection severity. It includes [Streptolysins (O-S)- Streptokinase-Streptodornase- M protein- Hyaluronidase- Hyaluronic acid in the capsule- cysteine protease- super- antigen proteins and several phage-encoded exotoxins]. The M-like protein is referring to surface protein which structurally resembles to the M protein [5]. Virulence factors found to be distributed equally within *S.pyogenes* structure as some are encoded within chromosomes. While others found on amobile genetic elements. Detection the presence
of those virulence factors considered as a simple method of a rapid clinical diagnosis [6]. M protein considered as the most important virulence factor in which could be used in classification of \textit{S.pyogenes} serotypically [7].

The aim of our study is the identification of \textit{S.pyogenes} isolates from the different sources. To detect the antibiogram susceptibility of this organism. Furthermore this study aimed to classify the isolates serotypically attempting to find the relation and the possibility of reverse zoonosis between animal isolates and human isolates depending on the M protein serotyping.

Material and Methods

This study was conducted among samples collected from cows and buffalos milk (440) and throat swabs from milkers (55) in Egypt-Sohag governorate.

California Mastitis test (CMT). Was performed by the method recommended by (APHA, 1992). The mastitis indicator kit had been obtained from [Impfstoff work Friesoythe Gmbh-Germany].

Collection of samples [8]. Within the period from January 2018 to June 2019, A total of 440 raw milk samples (mastitic and apparently normal) were collected from different animal farms at Sohag governorate, Egypt (368 from cows and 72 from buffaloes) and 55 throat swab samples collected from human milkers. As a result, 75 isolates of animal source and 25 isolates of human source were identified as β-haemolytic streptococci on sheep blood agar and by Gram staining (Fig. 1), blood haemolysis (Fig. 2), Lancefield grouping agglutination strep-check kit (Fig. 3) and a negative catalase production test. After the identification of the isolates they were cultured on the brain heart infusion broth and stored in 50% glycerol stock in -80º until being used. A reference strains (ATCC19615) had been obtained from the Microbiological Resource Canters MIRCENS (Faculty of Agriculture- Ain Shams University-Egypt) which used as positive control strain.

Fig. 1. S. pyogenes with Gram stain.

Fig.2. β- Hemolytic strains of S. pyogenes on blood agar.
Identification of *Streptococcus pyogenes* Isolates Phenotypically. Bacitracin sensitivity test had been performed in Abraham and Sistla method [9]. With adjusting the optical density (OD) of the overnight incubated culture to about 10⁶ CFU/ml then spreaded with asterile swab on a blood agar plate and followed by bacitracin disc placing on the each plate center. After the overnight incubation the inhibition zone diameter was measured with a suitable measuring tool.

Antimicrobial (antibiogram) Sensitivity of the Isolates. All the identified *S.pyogenes* isolates from both animal and human origin in addition to the standard strains (ATTC19615) had been subjected to antibiogram sensitivity test by using the method of (Kirby-Bauer) antibiotic disc diffusion [10]. With the conditions of CLSI 2015 [11]. In this study eight different antibiotics had been used which are bacitracin, penicillin G, tetracycline, erythromycin, clindamycin, cefuroxime, amoxicillin /sulbactam and cefoperazone (Fig.4).

Isolates Serotyping. In acapillary tubes glass aspecific antisera to different M-protein types (UMN laboratory) (M1-M2-M3-M4-M6) were used to determine strains serotype according to Johnson et al [12].

Molecular Detection of *S. pyogenes*. The chromosomal DNA Extraction and detection of Spy1258 gene using PCR. Using bacterial specific DNA isolation kit DNA was extracted [Gene JET Genomic DNA Purification kit (k0721)] under the instructions of the manufacturer. For detection of *S. pyogenes* using Spy1258 primers listed in Table 1. Preparing a 25 μl of the reaction volume by mixing 12.5 μl of master mix [My Red TaqMix – Bioline - United King]. A1 μl (0.5 μM) from each of forward and reverse primers of the tested gene and 3 μl of DNA template and nuclease free water. Negative control was prepared by using nuclease free water. (PCR) reactions were performed using Cycler 003 PCR Machine [A & E Lab (UK)]. With the conditions of 2 min of initial denaturation at 94°C. 35 cycles of denaturation (30 s at 94°C), annealing (30 s) extension (60 s at 72°C). With final extension at 72°C for 10 min. (PCR) products were analyzed by electrophoresis using 1% agarose gel. Finally stained with ethidium bromide to be visualized under UV light tool (Fig.5).

Results

California Mastitis test. Out of 368 of examined apparently normal cows quarter milk samples 175 (47.55%) reacted positively to CMT, while 193 (52.45%) quarter milk samples reacted negatively to CMT (Fig.6).

Out of 72 of examined apparently normal cows quarter milk samples 25 (34.72%) reacted positively to CMT, while 47 (65.28%) quarter milk samples reacted negatively to CMT (Fig.7).

Collection, Isolation and Identification of different sources Isolates. In this study out of 440 animal milk samples, 75 isolates were identified and out of 55 human throat swap isolates 25 isolates were identified as *Streptococcus pyogenes* (Fig.3). The isolated colonies founded to be small grey beta-hemolytic (Fig. 2). Negative catalase production test using tube method. Examination under light microscope reveal that the isolated colonies contain violet ovoidal and coccidal
bacteria which was arranged in pairs or chains (Fig. 1). Also found that out of 495 animal and human specimens, 100 (20.2%) isolates had been identified using bacitracin sensitivity test, positive Lancefield’s latex agglutination kit (Fig 3). Positive (PCR) product for spy1258 gene (Fig. 5) & (Table1). According to the sources of S. pyogenes isolates founded that 75 (17%) isolates were from milk (Fig. 8) and 25 (45.5%) isolates were from milkers throat swabs (Fig. 9).

Fig. 4. Sensitivity test of S. pyogenes isolates according to the diameter of inhibition zone.

Fig. 5. Gel-electrophoresis for PCR product of SPY1258 gene.

Fig. 6. Illustration of mastitis scores by using CMT in cow quarter milk samples.
Fig. 7. Illustration of mastitis scores by using CMT in cow quarter milk samples.

Fig. 8. Prevalence of *S. pyogenes* in examined quarter milk samples.

Fig. 9. Illustrated Prevalence of *S. Pyogenes* in examined throat swap samples.
TABLE 1. (PCR) primers Sequences of (SPY1258) gene.

<table>
<thead>
<tr>
<th>Gene</th>
<th>The Primer</th>
<th>Sequence</th>
<th>Product length</th>
</tr>
</thead>
<tbody>
<tr>
<td>(SPY1258)</td>
<td>SPY1258 (F)</td>
<td>5’ AAAGACCGCCTAACCACCT3’</td>
<td>407bp</td>
</tr>
<tr>
<td></td>
<td>SPY1258 (R)</td>
<td>5’ TGCCAAGGTAAACTTCTAAAGCA 3’</td>
<td></td>
</tr>
</tbody>
</table>

Serological M Protein Typing. From the milk samples 61 (81.3%) were classified into five serotypes; however, the remaining 14 (18.7%) founded to be untypeable. M6 was the most commonly identified serotype 29 (38.67%) followed by M1 10 (13.3%) and M3 8 (10.67%) serotypes. M2 and M4 7 (9.33%) for each were founded to be the least identified serotypes.

From the milker's throat swabs samples 23 (92%) were classified into five serotypes. However the remaining 2 (8%) founded to be untypeable. M6 was the most commonly identified serotype 10 (40%). Followed by M1 and M4 4 (16%) for each, M3 3 (12%) and M2 2 (8%) serotypes (Table2).

From the obtained results we found no significant difference had been detected in the distribution of M protein serotypes between isolates obtained from bovine milk and milker's throat swabs as a sources.

Antibiogram(antibiotic) Sensitivity Testing. Antibiotics sensitivity was determined by disc diffusion method under the standards conducted by CLSI [11]. In our study different isolates were classified into sensitive, intermediate or resistant. *S. pyogenes* pattern of sensitivity shown that all the *S. pyogenes* isolates were sensitive to penicillin G, cefuroxime, ampicillin/sulbactam and cefoperazone and resistant to erythromycin and clindamycin. No significant difference was found between animal and human isolates resistance pattern regarding to isolates source.

Discussions

In this study Out of 368 of examined apparently normal cows quarter milk samples 175 (47.55%) reacted positively to CMT, while 193(52.46%) quarter milk samples reacted negatively to CMT. Out of 72 of examined apparently normal cows quarter milk samples 25(34.72%) reacted positively to CMT, while 47 (65.28%) quarter milk samples reacted negatively to CMT.

S. pyogenes is a beta-haemolytic (GAS) which is associated with human upper respiratory tract and other soft tissues infections [13–14]. We can identified *S. pyogenes* isolates by using bacitracin sensitivity test [15]. Also other more sensitive methods for identification had been used as (GAS) latex agglutination kit and (PCR) for *(spy 1258)* gene [9, 16]. In our study by using the most recent applicable techniques 75 isolates out of 440 (17%) milk samples were identified as *S. pyogenes*. Aevdout of 55 human throat swabs samples 25 (45.5%) found to be identified as *S. pyogenes*. The results showed higher incidence rate of *S. pyogenes* infections comparing with the incidence rate detected in India that only 160 *S. pyogenes* isolates had been detected among 34065 clinical samples (0.0047%) [9]. Despite of *S. pyogenes* annual incidence of infections is varied greatly. Ranged between (0.029) and (2.84%) per (100,000) populations [17].

In our study results antibiotic sensitivity testing reveal high sensitivity (100%) of all isolates for amoxicillin/clavulanic acid and penicillin G. A similar observation had been reported in Pakistan [18]. While lower sensitivity level (81%) had been reported in Egypt [19].

Ceftriaxone sensitivity was observed in all the isolates as mentioned by Camara et al [20]. And Vil.lasenor et al [21] reported intermediate sensitivity for ceftriaxone. Variable results were observed in Egypt and Iran where lower resistance rate had been observed (50% and 12%) respectively [19, 22]. Also in our study we found complete resistance to erythromycin and clindamycin. The increased level of bacterial resistance to different antibiotics reveals the modification patterns of bacterial sensitivity for the mostly and frequently used antibiotics [23].

Egypt. J. Vet. Sci. Vol. 54, No. 6 (2023)
In this study M protein serotyping shown that a higher prevalence rate of M6 serotype was identified in 40% of all the S. pyogenes isolates (animal and human isolates) as it was the first Gram-positive surface protein to be completely sequenced. In contrast to other observation which had been reported in a previous study in UK stated that M1 is the most predominant [24]. In our study no significant difference between percentage of M protein serotypes percentage in animals and human isolates as in animals isolates was (13.3% - 9.33% - 10.67% - 9.33% - 18.67%) for (M1-M2-M3-M4-M6) respectively. While in human isolates is (16 % - 8% - 12% - 16% - 40%) for (M1-M2-M3-M4-M6) respectively.

Conclusions

S. pyogenes are not only associated with human infection only but it could be transmitted to animals causing sub-acute mastitis and re-secreted in milk with reverse zoonosis mechanism causing spread of infection to other human hosts. S. pyogenes is found to be resistant to many common used antibiotics and its resistance is developed day by day. According to M protein serotyping M6 is the most predominant among animal and human isolates which may refers to a common source of infection.

Acknowledgements

My sincere thanks and gratitude to all the staff member of microbiology department, faculty of veterinary medicine Cairo university and microbiology & immunology department, NRC. For all their valuable helps.

Authors contributions

All authors had been contribute to this work equally.

Conflicts of Interest

No conflicts of interest for publication of this paper.

References

Egypt. J. Vet. Sci. Vol. 54, No. 6 (2023)

Egypt. J. Vet. Sci. Vol. 54, No. 6 (2023)
PREVALENCE AND CHARACTERIZATION OF *Streptococcus pyogenes* ISOLATES... 1235

Mohamed Doroisy Mohamed, and Sahar Marjan.

Title: Prevalence and Characterization of *Streptococcus pyogenes* Isolates from Cows, Camels, and Goats in Sohag Governorate, Egypt.

Abstract:

Streptococcus pyogenes is a common pathogen in many animals and humans. It is often associated with respiratory infections, but it can also cause other diseases such as pharyngitis. This study aimed to investigate the prevalence of *S. pyogenes* in different animal species in Sohag Governorate, Egypt.

Materials and Methods:

A total of 8521 samples were collected from different animal sources, including 44 from cows, 27 from camels, and 8521 from goats. All samples were cultured and screened for *S. pyogenes* using standard microbiological techniques.

Results:

Streptococcus pyogenes was isolated from 863 (6.82%) of the samples. The isolates were further characterized by their serological and biochemical properties.

Conclusion:

Streptococcus pyogenes is a common pathogen in Sohag Governorate, with a prevalence of 6.82%. Further studies are needed to understand the epidemiology and pathogenesis of this organism in different animal species.

Keywords: *Streptococcus pyogenes*, Animal Pathogens, Egypt.

Egypt. J. Vet. Sci. Vol. 54, No. 6 (2023)

Mohamed Doroisy Mohamed, and Sahar Marjan.

Title: Prevalence and Characterization of *Streptococcus pyogenes* Isolates from Cows, Camels, and Goats in Sohag Governorate, Egypt.

Abstract:

Streptococcus pyogenes is a common pathogen in many animals and humans. It is often associated with respiratory infections, but it can also cause other diseases such as pharyngitis. This study aimed to investigate the prevalence of *S. pyogenes* in different animal species in Sohag Governorate, Egypt.

Materials and Methods:

A total of 8521 samples were collected from different animal sources, including 44 from cows, 27 from camels, and 8521 from goats. All samples were cultured and screened for *S. pyogenes* using standard microbiological techniques.

Results:

Streptococcus pyogenes was isolated from 863 (6.82%) of the samples. The isolates were further characterized by their serological and biochemical properties.

Conclusion:

Streptococcus pyogenes is a common pathogen in Sohag Governorate, with a prevalence of 6.82%. Further studies are needed to understand the epidemiology and pathogenesis of this organism in different animal species.

Keywords: *Streptococcus pyogenes*, Animal Pathogens, Egypt.

Egypt. J. Vet. Sci. Vol. 54, No. 6 (2023)