Cryptosporidiosis is a zoonotic disease that occurs acutely or chronically in young or immune-compromised animals and humans, caused by Cryptosporidium species. Cryptosporidium is recognized as one of the major enteropathogens associated with neonatal diarrhea in ruminants. The aim of this study is to determine the prevalence of Cryptosporidium spp. in lambs in Siirt province using microscopic and molecular methods. The fecal materials of the study collected from 194 randomly selected lambs of different sexes, up to 4 weeks of age, in various farms. As a result of microscopic examination, Cryptosporidium spp. oocysts were found in 54 (27.84%) of 194 samples, while specific bands were obtained in 63 (32.47%) samples as a result of Nested PCR analysis. A statistically significant relationship was found between lambs with and without diarrhea (P<0.001) while no statistically significant relationship was found between age groups, gender, and locations (P>0.05). In conclusion, the data obtained from this study revealed that Cryptosporidium infection is present in Siirt province, and Cryptosporidium spp. should be considered as one of the agents in the etiology of neonatal diarrhea in lambs.

Keywords: Cryptosporidium spp., Lamb, Molecular, PCR, Siirt, Turkey.

Introduction

Cryptosporidiosis is a zoonotic disease in the phylum Apicomplexa that occurs in young or immunocompromised animals and humans are caused by Cryptosporidium species and is one of the most important diseases of the last century [1-4]. Cryptosporidium is a worldwide coccidial
protozoan [5] and is recognized as one of the major enteropathogens associated with neonatal diarrhea in ruminants [6, 7]. It is considered to be one of the main causes of morbidity and mortality in young farm animals and causes significant economic losses worldwide [6, 8]. From an economic point of view, it is considered a serious disease, particularly for lambs and calves [1-3, 9]. It is also considered to cause diarrhea cases in various animal species and humans, either by itself or in combination with other agents [5]. Contaminated water is the most important factor in the prevalence of Cryptosporidium oocysts, followed by contaminated food and animal-human contamination [10, 11].

The most prominent clinical symptom of cryptosporidiosis is diarrhea, which lasts 2-12 days. Typically, animals 1-5 weeks old are exposed to infection. Lambs aged 5-12 days are most susceptible to the disease, which causes mild or severe diarrhea accompanied by infection, depression, dehydration, decreased milk intake, growth retardation, stiffness, hyperpnea, slow gait, anorexia [6, 12, 13].

This study aimed to determine Cryptosporidium spp. prevalence in lambs microscopically and molecularly in the Siirt province of Turkey.

**Material and Methods**

**The Study Area and Animal Material**
This study was carried out in the Şirvan, Kurtalan, Baykan, and Aydinar districts of Siirt province located in the South eastern Anatolia Region of Turkey (37° 55′ 48″ N, 41° 56′ 23″ E). The fecal material of the study collected from 194 randomly selected lambs of different sexes, up to 4 weeks old in various farms.

**Sample Collection and Preparation**
Fecal samples were taken from the rectum of each lamb using disposable latex gloves. The samples were placed in fecal containers and labeled. The sex, age, and location information of the animals were recorded.

**Microscopic examination**
After the collected samples are brought to the laboratory, they were stained with Kinyoun’s acid-fast method and examined under a microscope (Leica DM500, Switzerland) at 100x magnification [14].

**DNA extraction**
DNA extraction was performed in all fecal samples using the Gene Matrix Stool DNA Purification Kit (Poland, Cat E3575-01) according to the manufacturer’s protocol. The obtained DNAs were stored at -20°C.

**PCR Amplification**
The primers described by Xiao et al. [15] were used to amplify the SSU rRNA gene region. 5'-TTCTAGAGCTAATACATGCG-3’ and 5’-CCCAITTTCTTCGAAACAGGA-3’ Primers were used to amplify the 1325 bp gene region in the first step of nested PCR. 5’-GGAGGTTTGATTTTAGATAAAG-3’ and 5’-AAGGAGTAAGGAACACCTCCA-3’ Primers were used to amplify the 826-864 bp gene region in the second step of Nested PCR. Protocol for both reactions was performed according to Ayan and Orunç Kılınç [16]. The reaction was performed in an automatic thermal cycler (Eppendorf Mastercycler® pro) device. Subsequently, 1.5% agarose gel was prepared and stained with RedSafe™ Nucleic Acid Staining Solution. The PCR products were run on an agarose gel afterward, and images were obtained on the gel imaging device (Syngene bioimaging system).

**Statistical Analysis**
The results between the groups were evaluated by the chi-square test. A value of P<0.05 was considered statistically significant.

**Ethical Approval**
Ethical approval for this study was obtained from the Siirt University Local Ethics Committee for Animal Experiments (Decision No: 2023/01/07).

**Results**
As a result of microscopic examination, Cryptosporidium spp. oocysts were found in 54 (27.84%) samples (Fig. 1), while in Nested PCR results, 63 (32.47%) samples showed Cryptosporidium spp. specific bands of 826-864 bp in size (Fig. 2). The highest positivity among age groups was found in the 0-15 days group, while the highest positivity among locations was Şirvan district. The highest positivity between genders was found in females (Table 1). A statistically significant relationship was found between age groups, gender, or locations (P>0.05).
MICROSCOPIC AND MOLECULAR PREVALENCE OF Cryptosporidium spp. IN LAMBS …

Fig. 1. Cryptosporidium oocysts stained with Kinyoun’s acid-fast method (x100 magnification).

Fig. 2. Amplification of Cryptosporidium spp. using nested-PCR. Lanes M: Marker, N: Negative control, P: positive control, 10, 12, 52, 53, 67, and 117 represent Cryptosporidium sp. (826-864 bp).
**Cryptosporidium** spp. is one of the most common intestinal pathogens in both diarrheal and non-diarrheal ruminants and is seen as one of the most important causes of early lamb diarrhea [1, 6, 8]. Common in many parts of the world, Cryptosporidiosis is also one of the most important zoonotic diseases. The disease is more common in livestock workers, young people, and people with weakened immune systems [17].

**Cryptosporidium** prevalence in lambs varies according to countries and regions. Many studies were performed on lambs with or without diarrhea in many parts of the world, for which the prevalence of the disease was reported as follows: 3.7% in Brazil [18], 44.8% in Spain [19], 10.1% in Poland [20], 42.1% in Serbia [21], 13.1% in Belgium [22], 23% in Canada [23], 77% in America [24], 20% in Trinidad and Tobago [5], and 11.2% in Tunisia [25]. In studies carried out on lambs in Turkey, a prevalence rate of 1%-79.1% has been reported [1, 3, 6, 8, 12, 26-31]. Studies show that *cryptosporidium* infections are quite common in animals in Turkey and around the world.

As a result of microscopic examination and PCR analyses of this study, 27.84% and 32.47% prevalence were determined respectively. The prevalence obtained as a result of this study was found to be lower than the findings of some researchers [8, 19, 21, 24]; similar to the findings of certain researchers [3, 23, 28, 29], and higher than the findings of other researchers [1, 5, 6, 8, 12, 18, 20, 22, 25]. The potential reasons for the differences between the studies can be include as geographical location, type of farm, number of animals in the farm, sample size, animal species, age of the animal, diarrhea status, nursing status, water resources, and methods used. Clinically sick and latently infected animals contaminate feed and water, transferring the disease to other animals. The wide host range of *Cryptosporidium*, combined with the massive oocyst output from infected hosts, results in a high level of contamination of the environment with this parasite [5]. This situation may be among the reasons for the prevalence obtained as a result of this study.

Al-Zubaidi [4] reported that PCR method was more sensitive than microscopic method.

### TABLE 1. Distribution of parameters according to the positive results.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>(n)</th>
<th>Diarrheic</th>
<th></th>
<th>Non-diarrheic</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(n)</td>
<td>(%)</td>
<td>(n)</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>117</td>
<td>27</td>
<td>23.08</td>
<td>9</td>
<td>7.69 NS</td>
</tr>
<tr>
<td>Male</td>
<td>77</td>
<td>20</td>
<td>25.97</td>
<td>7</td>
<td>9.09</td>
</tr>
<tr>
<td>Age (Days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-15</td>
<td>116</td>
<td>31</td>
<td>26.72</td>
<td>9</td>
<td>7.76 NS</td>
</tr>
<tr>
<td>16-30</td>
<td>78</td>
<td>16</td>
<td>20.51</td>
<td>7</td>
<td>8.97</td>
</tr>
<tr>
<td>Diarrhea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>103</td>
<td>47</td>
<td>45.63</td>
<td>-</td>
<td>- ***</td>
</tr>
<tr>
<td>No</td>
<td>91</td>
<td>-</td>
<td>-</td>
<td>16</td>
<td>17.58</td>
</tr>
<tr>
<td>Location</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Şirvan</td>
<td>60</td>
<td>19</td>
<td>31.67</td>
<td>6</td>
<td>10.00</td>
</tr>
<tr>
<td>Kurtalan</td>
<td>52</td>
<td>13</td>
<td>25.00</td>
<td>3</td>
<td>5.77 NS</td>
</tr>
<tr>
<td>Aydınlar</td>
<td>45</td>
<td>9</td>
<td>20.00</td>
<td>4</td>
<td>8.89</td>
</tr>
<tr>
<td>Baykan</td>
<td>37</td>
<td>6</td>
<td>16.22</td>
<td>3</td>
<td>8.11</td>
</tr>
<tr>
<td>Method</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microscopy</td>
<td>194</td>
<td>43</td>
<td>22.16</td>
<td>11</td>
<td>5.67 NS</td>
</tr>
<tr>
<td>Nested PCR</td>
<td>194</td>
<td>47</td>
<td>24.23</td>
<td>16</td>
<td>8.25</td>
</tr>
<tr>
<td>Total</td>
<td>194</td>
<td>47</td>
<td>24.23</td>
<td>16</td>
<td>8.25</td>
</tr>
</tbody>
</table>

***: P<0.001, NS: Non-significant
In this study, the higher prevalence detected by PCR method coincides with the findings of the researcher.

Some studies [4, 5, 8, 10] have reported a higher prevalence in animals with diarrhoea. In this study, a higher prevalence was also determined in the diarrheal groups compared to those without diarrhea, and a statistically significant difference was observed (p<0.001).

It has been reported that Cryptosporidiosis causes serious problems in small ruminants such as calves, lambs, and kids, and age is the most important risk factor for its spread [3]. Previous studies [6, 8, 10, 17, 32, 33] show that lambs aged 1-15 days are generally affected by this disease more than other age groups. In this study, similar to the findings of the researchers, a higher prevalence was found in the 1-15 days age group. This could be due to the underdeveloped immune system in young animals and their inability to mount an effective immune response to eliminate the infection.

Some researchers [4, 34-36] reported that they found a higher prevalence in males than females in their studies. Similarly, in this study, higher prevalence was found in males than females, which supports the researchers. In a study carried out on goat kids, it was revealed that sex had no effect on the elimination of Cryptosporidium oocysts [37].

**Conclusion**

In conclusion, the data obtained from this study revealed that Cryptosporidial infection is present in Siirt province, and Cryptosporidium spp. should be considered as one of the agents in the etiology of neonatal diarrhea in lambs. Therefore, in addition to keeping cryptosporidiosis cases in mind during diarrhea treatment protocol in clinical practice, more studies should be performed to evaluate its impact on the human population and livestock industry from a public health perspective.

**Conflicts of interest**

The authors declare that there is no conflict of interest.

**Funding statement**

The authors declared that this study received no financial support.

**Authors contributions**

ÖYÇ, BAÇ and AA designed the research plan, organized the study, KE, MAS and VB collected the samples. AA, ÖOK and ÖOA made the laboratory analysis, ÖYÇ and BAÇ wrote the manuscript.

**References**


*Egypt. J. Vet. Sci.* **Vol. 54**, No. 5 (2023)


