Histopathological and Scores Assessment of Using Omega-3 for Improvement Gingival Wound Healing Process in Rabbit Model

Omar Kh. Mahmoud¹, Jawnaa K. Mammdoh¹ and Mohammed G. Saeed²
¹Department of Dental Basic Sciences, College of Dentistry, University of Mosul, Mosul, Iraq.
²Department of Pathology and Poultry Diseases, College of Veterinary Medicine, University of Mosul, Mosul, Iraq.

The aim of this trial is to use omega-3 as a prophylactic or curative, or both on gingival injury healing in rabbits. To attain this objective has been employed 36 rabbits, were divided into 3 groups, each with 12 animals. The first group were considered as a control group, receiving normal saline for 10 days, while the second group received omega-3 for 10 days before gingival incision. The third group received omega-3 for 10 days before and continuous treatment for 10 days after the gingival incision. An incision was done in the gingival (0.5 cm) in all groups. The group given Omega-3 for 10 days before and after the wound has had the superior results of the preceding therapies. It enhanced re-epithelization score and substantial increase in granulation tissue formation and angiogenesis, and decrease inflammation scores. The histopathological section (3 days post-surgery) showed the site of the wound with re-epithelialization (score 4), granulation tissue (score 2), angiogenesis (score 3), and without inflammation (score 0), as well as 7 days post-surgery were the same scores except the score of granulation tissues was 3. Using omega-3 has a superior effect, especially when used for both prophylactic and treatment, and it helps to reduce inflammatory markers while improving healing indicators such as re-epithelialization, granulation tissue, and angiogenesis. As a result, omega-3 can be considered a beneficial agent in the treatment of wounds and gingivitis.

Keywords: Omega-3, Gingival wound, Inflammation, Histopathological changes.

Introduction

Wound healing is a three-stage biological process that is both intricate and sequential [1]. Inflammation and molecular and cellular processes occurrence wound healing begins during the inflammatory phase and is aided by a class of protein mediators known as proinflammatory cytokines[2-4].

In reaction to stimuli such as a cut or bruise, arachidonic acid is released from the phospholipid bilayer of cell membranes[5]. Interleukin-1b (IL-1b), IL-6, and tumor necrosis factor-a are the main proinflammatory cytokines (TNF-a) (6). Neutrophils, macrophages, mast cells, fibroblasts, and endothelial cells release these hormones, which have autocrine, paracrine, and endocrine functions[7].

This network of proinflammatory cytokines helps control infection and prepare tissues for further repair by enhancing phagocytic activity[8]. Stimulating migration of keratinocytes at wound edges, fibroblast chemotaxis and proliferation[9], and the breakdown of extracellular matrix proteins, and they can be a pathway for the regulation and formation of collagen by binding to receptors on the combined target cells[10].

Gingivitis is a common periodontal disease caused by a combination of host immune
responses and biofilm lipopolysaccharide (LPS) is an endotoxin produced by Gram-negative bacteria that increases arachidonic acid metabolism [11]. The inflammatory pathways are then activated. TNF- and IL-1 are two pro-inflammatory cytokines that can be affected by LPS [12]. These are some of the most common pro-inflammatory cytokines, and they play a key role in the degradation of periodontal tissue, alveolar bone, and tooth loss. IL-1 and TNF- can also cause connective tissue damage [13,14].

Omega-3 fatty acids are found in the highest concentration in fish oil. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are the most common polyunsaturated fatty acids (PUFAs) [15,16]. Cold-water fish, such as salmon and mackerel, are the main sources of PUFAs [17].

The number of carbon double bonds in the chain of fatty acids is categorized as follows: polyunsaturated fatty acids (PUFAs) with more than one unsaturated bond; saturated fatty acids with only one unsaturated bond. The metabolites of omega-3 play an important role in the synthesis of different inflammatory mediators such as prostaglandins (PG), leukotrienes (LT), thromboxanes (TX), protectins, and resolvins. Omega-3 FA (fatty acid) plays a role in the host cellular membrane which regulates membrane fluidity and intricate lipid raft assembling in the cell membrane [18-20].

The aim of this study was to examine the role of omega-3 as a prophylactic agent to overcome the gingival wound affections in rabbit.

Material and Methods

Drugs used

Omega-3 was capsulated pure oil obtained from Beauty and Health Co., Ukraine.

The animals

This experiment included thirty six adult local rabbits their weighting and aging were (0.5 and 1 kg), (4 months), respectively. They were raised in dedicated cages with enough food and water for the duration of the experiment, as well as appropriate environmental parameters like temperature, lighting, and cleanliness. When working with animals, the known humane rules were observed.

Ethical approval

The Laboratory Animal Handling Ethics Committee of the University of Mosul provided ethical and humane authorization for handling animals, and the form number is UOM.Dent AEN/AL.9/22.

Experiment Design

The rabbits were divided into three equal groups, each with 12 animals. The first group considered as a control group, receiving normal saline for 10 days, while the second group received omega-3 300mg/rabbit for 10 days before gingival incision. The third group received omega-3 300mg/rabbit for 10 days before and continuous treatment for 10 days after the gingival incision. The incision was made in the gums (0.5 cm) with a sterile scalp in all groups, and the animals were sacrificed after 3 and 7 days for sample collections.

The rabbits were anesthetized with anesthetic ether before being euthanased by it and tissue samples were obtained from the site of the gum wound in the rabbit euthanasia periods (3 and 7 days). The gum wound site tissues were fixed in a neutral 10% formalin solution.

Statistically analysis

Using one-way ANOVA, Duncan test to analyze the data at a level of significance less than 0.05, p<0.05.

Results

In consideration of re-epithelization scores, the treatment with Omega-3 before and after the wounding operation showed a significant difference as a compare with control group and the other groups. A substantial difference was observed in the Omega-3 group before the surgery for 3 and 7 days when compared to the control group (Table 1).

We found a substantial increase in granulation tissue formation at the wound site in the omega-3 group before and after including the wound as compareto the control group and the other groups (Table 2).

When it came to angiogenesis, the two groups that were given Omega-3 before or before and after the wound surgery had a substantial difference from the other groups (Table 3).

As for the levels of inflammation scores in the groups treated with Omega-3 before and after the wounding procedure, there was a significant difference represented by a decrease in the number of levels of inflammation compared with the rest of the groups (Table 4).
TABLE 1. The scores of re-epithelialization of rabbit gingival surgical wound healing process of all groups.

<table>
<thead>
<tr>
<th>Groups/Periods</th>
<th>Control group (N.S pre-surgical wound)</th>
<th>Control group (N.S pre & post-surgical wound)</th>
<th>Omega-3 (pre-surgical wound treat) group</th>
<th>Omega-3 (pre & post-surgical wound treat) group</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scores of re-epithelialization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>After 3 days</td>
<td>1.3 ± 0.28<sup>ab</sup></td>
<td>1.3 ± 0.25<sup>aa</sup></td>
<td>2.6 ± 0.25<sup>aa</sup></td>
<td>3.3 ± 0.28<sup>aa</sup></td>
<td>0.006</td>
</tr>
<tr>
<td>After 7 days</td>
<td>2.3 ± 0.57<sup>ab</sup></td>
<td>2.3 ± 0.33<sup>aa</sup></td>
<td>3.6 ± 0.33<sup>ab</sup></td>
<td>3.6 ± 0.33<sup>aa</sup></td>
<td>0.026</td>
</tr>
</tbody>
</table>

N. Total specimens (rabbits) = 3
Data expressed as Mean ± Standard error
The Capital letters mean there are significant differences between groups at p≤0.05
The Small letters mean there are significant differences between periods at p≤0.05

TABLE 2. The scores of granulation tissue of rabbit gingival surgical wound healing process of all groups.

<table>
<thead>
<tr>
<th>Groups/Periods</th>
<th>Control group (N.S pre-surgical wound)</th>
<th>Control group (N.S pre & post-surgical wound)</th>
<th>Omega-3 (pre-surgical wound treat) group</th>
<th>Omega-3 (pre & post-surgical wound treat) group</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scores of granulation tissue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>After 3 days</td>
<td>1.33 ± 0.33<sup>a</sup></td>
<td>1.6 ± 0.33<sup>aa</sup></td>
<td>2 ± 0.0<sup>aa</sup></td>
<td>2.6 ± 0.33<sup>aa</sup></td>
<td>0.055</td>
</tr>
<tr>
<td>After 7 days</td>
<td>1.3 ± 0.40<sup>aa</sup></td>
<td>1.6 ± 0.25<sup>aa</sup></td>
<td>2 ± 0.0<sup>aa</sup></td>
<td>3 ± 0.0<sup>aa</sup></td>
<td>0.05</td>
</tr>
</tbody>
</table>

N. Total specimens (rabbits) = 3
Data expressed as Mean ± Standard error
The Capital letters mean there are significant differences between groups at p≤0.05
The Small letters mean there are significant differences between periods at p≤0.05

TABLE 3. The scores of angiogenesis of rabbit gingival surgical wound healing process of all groups.

<table>
<thead>
<tr>
<th>Groups/Periods</th>
<th>Control group (N.S pre-surgical wound)</th>
<th>Control group (N.S pre & post-surgical wound)</th>
<th>Omega-3 (pre-surgical wound treat) group</th>
<th>Omega-3 (pre & post-surgical wound treat) group</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scores of angiogenesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>After 3 days</td>
<td>1.3 ± 0.33<sup>a</sup></td>
<td>1.6 ± 0.33<sup>aa</sup></td>
<td>2 ± 0.57<sup>aa</sup></td>
<td>2.6 ± 0.33<sup>aa</sup></td>
<td>0.201</td>
</tr>
<tr>
<td>After 7 days</td>
<td>1.6 ± 0.33<sup>a</sup></td>
<td>1.6 ± 0.33<sup>aa</sup></td>
<td>2.3 ± 0.28<sup>aa</sup></td>
<td>2.6 ± 0.25<sup>aa</sup></td>
<td>0.160</td>
</tr>
</tbody>
</table>

N. Total specimens (rabbits) = 3
Data expressed as Mean ± Standard error
The Capital letters mean there are significant differences between groups at p≤0.05
The Small letters mean there are significant differences between periods at p≤0.05

The result of the histopathological sections of the rabbit gingiva of the negative control group (without wound) revealed the normal architecture of gingival tissue represented by epithelial cells of mucosa, submucosa and muscular layer (Fig. 1). The positive control group administrated normal saline pre-surgical wound after 3 days showed the site of wound with re-epithelialization (score 2), granulation tissue (Score 1), angiogenesis (Score 1) and inflammation with infiltration of inflammatory cells (score 3) (Fig. 2-A & B), whereas in the same group but after 7 days revealed the site of wound with re-epithelialization (Score 2), granulation tissue (Score 2), angiogenesis (Score 2) and inflammation with infiltration of inflammatory cells (Score 2) (Fig. 2-C & D).

The sections of the administrated normal saline (preand post- surgical wound after 3 days) revealed the site of wound with re-epithelialization (Score 2), granulation tissue (Score 1), angiogenesis (Score 2), and infiltration with infiltration of inflammatory cells (Score 2) (Fig. 3-A & B), while after 7 days revealed re-epithelialization (Score 3), granulation tissue (Score 2), angiogenesis (Score 1), and inflammation with infiltration of inflammatory cells (Fig. 3-C & D).

The rabbit gingiva of the administration Omega-3 pre-surgical wound group after 3 days revealed the site of the wound, with re-epithelialization (Score 3), granulation tissue (Score 2), angiogenesis (Score 1), and inflammation with infiltration of inflammatory cells (Score 2) (Fig. 4-A & b), whereas after 7 days showed the site of wound with re-epithelialization (Score 4), granulation tissue (Score 1), angiogenesis (Score 2), and inflammation with infiltration of inflammatory cells (Score 2) (Fig. 4-C & D).

The group of rabbit gingiva of administration Omega-3 pre and post-surgical wound group after 3 days recorded the site of wound with re-epithelialization (score 4), granulation tissue (Score 2), angiogenesis (Score 3), and without inflammation (Score 0) (Fig. 5-A & B), whereas after 7 days revealed the site of the wound with re-epithelialization (Score 4), granulation tissue (Score 3), angiogenesis (Score 3), and without inflammation (Score 0) (Fig. 5-C & D).

Discussion

Wound healing is a complicated process in which several structured and chain reactions overlap to restore what has been damaged by a wound. Hemostasis, inflammation, proliferation, reorganization, and arrangement are the mechanisms involved[21-23].

Wound healing refers to a living organism’s replacement of destroyed or damaged tissue by newly produced tissue wound healing[24,25].

Omega-3 acids, which are made up of two types of unsaturated fatty acids called EPA and DHA[26], were employed in this study, and they were given to one group prophylactically before causing the wound, and to another group before and after executing the wound. The researchers compared the treated groups and the treatment periods of 3 and 7 days after incision done.

Our findings revealed that Omega-3 treatment before and after the wound procedure had a definite favorable effect on wound healing, as
seen by tissue samples collected from the wound site, particularly after 7 days of treatment, which shows re-epithelialization (score 4), granulation tissue (score 3), angiogenesis (scoring 3) and no inflammation at the wound site (score 0). And among the results of various tissue slices, this was the best. Our findings are in line with those of comparative studies in which omega-3 was used as an anti-inflammatory drug, with one study reporting that omega-3 supplementation is a simple strategy to improve the long-term treatment of periodontitis[27]. Another literature review reporting that using omega-3 as a treatment can significantly increase gum tissue regeneration while decreasing bleeding on examination[28-30].

Fig. 1. Photomicrograph of rabbit gingiva of negative control group (without wound) shows the normal architecture of gingival tissue representing by epithelial cells of mucosa (A), submucosa (B) and muscular layer (C). H & E stain, (1-A 100X, 1-B 400X).

Fig. 2. Photomicrograph of rabbit gingiva of positive control (pre-surgical wound normal saline administrate) group, (2-A & B): (after 3 days) shows the site of wound with (→), with re-epithelialization (score 2) (A), granulation tissue (score 1) (B), angiogenesis (score 1) (C) and inflammation with infiltration of inflammatory cells (score 3) (D). (2-C &D): (after 7 days) shows the site of wound with (→), with re-epithelialization (score 3) (A), granulation tissue (score 2) (B), angiogenesis (score 2) (C) and inflammation with infiltration of polymorph and mononuclear inflammatory cells (score 2) (D). H&E stain, (2-A & C 100X), (2-B & D 400X).
Fig. 3. Photomicrograph of rabbit gingiva of positive control (surgical wound with normal saline pre-treatment) group (after 3 days) shows the site of wound with (→), with re-epithelialization (Score 2) (A), granulation tissue (Score 1) (B), angiogenesis (Score 1) (C) and inflammation with infiltration of inflammatory cells (Score 3) (D). H&E stain, 100X.

Fig. 4. Photomicrograph of rabbit gingiva of administration Omega-3 pre-surgical wound group after 3 days. (4-A & B) (after 3 days) shows the site of wound with (→), with re-epithelialization (Score 3) (A), granulation tissue (Score 2) (B), angiogenesis (Score 1) (C) and inflammation with infiltration of inflammatory cells (Score 2) (D). (4-C & D) (after 7 days) shows the site of wound with re-epithelialization (Score 4) (A), granulation tissue (Score 1) (B), angiogenesis (score 2) (C) and inflammation with infiltration of inflammatory cells (Score 1) (D) H & E stain, (4-A & C 100X), (4-B & D 400X).
Fig. 5. photomicrograph of rabbit gingiva of Omega-3 pre and post-treatment (surgical wound) groups. (5-A & B) (After 3 days) shows the site of wound with re-epithelialization (Score 4) (A), granulation tissue (Score 2) (B), angiogenesis (Score 3) and without inflammation (Score 0) (C). (5-C & D) (After 7 days) shows the site of wound with re-epithelialization (score 4) (A), granulation tissue (Score 3) (B), angiogenesis (Score 3) (C) and without inflammation (Score 0). H & E stain, (5-A & C 100X), (5-B & D 400X).

Arachidonic acid is considered a pro-inflammatory since it is a mediator of inflammation and can operate as a vasodilator, and it is found in phospholipids[31]. Omega-3 competes with it when it is provided in the metabolic process [32]. Inflammation is influenced by the ratio of o-3 to o-6 arachidonic acid (AA) and o-3 EPA in tissues, plasma, and cell membranes [33].

More eicosanoids that are biologically less effective for inducing cellular responses than those produced by AA metabolism are produced with higher dietary levels of EPA and DHA derived metabolites, which impacts the generation of proinflammatory cytokines[34,35]. Furthermore, cell membrane fluidity, cell-to-cell signalling, cell motility, receptor contact with its agonist, membrane function such as capping position, and secondary signal generation are thought to affect proinflammatory cytokine gene expression at the transcriptional level[36].

Our findings are in line with one of the research that looked at the effect of EPA and DHA supplementation on wound healing in rabbit gingiva and the relationship between inflammation markers at wound sites[28]. Collagen production improved as a result of this investigation. Primary IL-1 expression also promotes keratinocyte development. It promotes re-epithelialization, boosts the generation of IL-6, and enhances blood vessel contraction[37].

Tian et al.(2020) observed that EPA greatly increasedIL-6 release in MCL cells in a comparable investigation. A substantial linear relationship between IL-6 levels and collagen synthesis was also discovered by the researchers[38]. This shows that EPA supplementation could help tissues that benefit from higher collagen formation recover faster[39].

Several studies have found that adding omega-3 fatty acids to one’s diet can help to
modulate inflammatory and immunological responses. Fatty acids can also impact natural killer cells, raising the CD4/CD8 ratio[40]. PUFAs have been shown to be beneficial in the treatment of a variety of inflammatory disorders in humans and animals, including rheumatoid arthritis, cardiovascular disease, diabetes, and autoimmune diseases. Omega-3, on the other hand, can be utilized to try to prevent gum tissue deterioration by suppressing cytokines[28].

The study found that using unsaturated omega-3 acids has a positive effect, especially when used for both prevention and treatment, and that it helped to reduce inflammatory markers while improving healing indications such as re-epithelialization, and granulation tissue, and angiogenesis. As a result, omega-3 can be considered a feasible alternative to antibiotics in the treatment of wounds and gingivitis.

Acknowledgment
We extend our sincere thanks to the College of Veterinary Medicine and College of Dentistry, University of Mosul for the facilities they provided to conduct this research

Conflicted interest
No conflict of interest with self-funding statement.

Funding statement: Self-funding

References

التغييرات النسيجية المرضية وتقييم نتائج استخدام أوميغا-3 في تحسين عملية التئام جروح اللثة في الأرانب

عبير خالد محمود1، جوناء خالد ممدوح1، محمد غسان سعيد2

1- فرع علم طب الأسنان الأساسية - كلية طب الأسنان - جامعة الموصل - الموصل - العراق.
2- فرع الأمراض وامراض الدواجن - كلية الطب البيطري - جامعة الموصل - الموصل - العراق.

تمت دراسة تأثير أوميغا-3 كوسيلة وقائية أو علاجية أو كليهما على شفاء جرح اللثة في الأرانب في هذه الدراسة، وتحقيق هذا الهدف اعتمدت الدراسة على 36 أرنبًا، قسمت إلى 3 مجموعات، كل مجموعة تضم 12 أرنبًا. استخدمت المجموعة الأولى كمجموعة سيطرة أعطيت المحلول الملح尼طي لمدة 10 أيام، بينما تلقى المجموعة الثانية أوميغا-3 لمدة 10 أيام قبل أجراء الجرح والمجموعة الثالثة تلقت أوميغا-3 لمدة 10 أيام قبل وبعد أجراء الجرح. تم عمل شق في اللثة في كل مجموعة بعد 10 أيام قبل وبعد عملية الجرح. أظهرت المجموعة التي أعطت أوميغا-3 لمدة 10 أيام قبل وبعد عملية الجرح أفضل النتائج من بين المعاملات السابقة، ولاحظ ظهور إعادة الظهارة وزيادة كبيرة في تكوين النسيج الحبيبي وتكوين الأوعية وانخفاض درجات الالتهاب. أظهر الفحص النسبي (بعد 3 أيام) في موقع الجرح إعادة تكوين النسيج البيئي (الدرجة 4) وتكوين النسيج البيئي (الدرجة 3) وتكوين الأوعية (الدرجة 3) ووجود حدوث الالتهاب (الدرجة 0). بعد 10 أيام ظهر في موقع الجرح إعادة تكوين النسيج البيئي (الدرجة 4) وتكوين النسيج البيئي (الدرجة 3) وتكوين الأوعية (الدرجة 3) وصورة الهيكل (الدرجة 0). خصصنا إلى أن استخدام أحماض أوميغا-3 له تأثير إيجابي خاص عن استخدامه للوقاية والعلاج معا، كما أنه يساعد في تقليل علامات الالتهاب مع تحسين مؤشرات الشفاء مثل إعادة تكوين النسيج البيئي وتكوين الأوعية الدموية الجديدة وتقليل نسبة الالتهاب، نتيجة لذلك يمكن اعتبار أوميغا-3 علاجًا مجديًا لمضادات الجروح والتهاب اللثة.

الكلمات المفتاحية: أوميغا-3، جرح اللثة، الالتهاب، التغييرات النسيجية المرضية.