Effects of ProbChick® On *E. Coli* O157:H7 Experimental Infection in Broilers

Ali R. Mohammad and Saevan S. AL-Mahmood*

Department of Pathology and Poultry Disease, College of Veterinary Medicine, University of Mosul, Mosul, Iraq.

*Corresponding author: Saevan S. AL-Mahmood, E-mail: saevan981@yahoo.com, Tel. +9647701667944
(Received 22/03/2022; accepted 26/05/2022)
DOI. 10.21608/ejvs.2022.129031.1332
©2022 National Information and Documentation Centre (NIDOC)

Introduction

Probiotics are live bacteria, fungi, or yeasts that replenish the flora of the gastrointestinal tract and aid in the maintenance of a healthy digestive system, which promotes bird growth and alternative to antibiotics; probiotics are becoming more widely used in poultry diets [1]. The word probiotic is derived from two Greek words, pro and biont, which mean for life [2]. In 1965 Lilly and Stillwell were the first to use the word [3]; according to a joint FAO/WHO work-group, Probiotics are live microorganisms that, when supplied in suitable proportions, impart a health benefit on the host [4]. Elie Metchnikoff was the first scientist who discovered that the microbiota present in the intestine plays an important role in maintaining a healthy body when he found that the Lactobacillus bacteria that produce lactic acid present in fermented milk products were able to increase the longevity of Bulgarian peasants [5]. For the most part, live apathogenic bacterial strains are used in animals and poultry that are generally considered as probiotics are *Lactobacillus acidophilus*, *L. sporogenes*, *L. bulgaricus*, *Streptococcus thermophilus*; *Bacillus subtilis*, and *Saccharomyces cerevisiae* [6]. Probiotics have various mechanisms of action such as inhibition of all pathogens by producing organic acids and antibacterial substances such as hydrogen peroxide, bacteriocins and defensins [7]; probiotics compete with pathogenic bacteria on both intestinal epithelial binding sites and for...
essential nutrients [8]; enhance the immune response by releasing regulatory T cells, effector T and B cells and antigen-presenting cells [9]. ProbChick® is a feed additive for poultry that have multiple types of beneficial bacteria Lactobacillus plantarum, L. sporogenes, L. acidophilus, Streptococcus thermophilus, Bacillus subtilis, Bifidobacterium bifidum and Saccharomyces cerevisiae, also contain digestive enzymes, which maintain good gut flora leads to a high rate of feed utilization and increase weight gain of broiler, inhibit the growth of pathogenic bacteria in the gut and enhance the immune response of broiler [10]. Colibacillosis affects all ages, but young birds are more frequently affected; the surviving infected chicks can be a source of E. coli infection for other chicks in the same hatch and lead to yolk sac infection (omphalitis), another form of colibacillosis such as coliform cellulitis, colisepticemia, coliform enteritis and panophthalmitis in older age [11]. We aimed in the current study to investigate the effect of ProbChick® as protective and therapeutic against E. coli infection in broilers.

Materials and Methods

Experimental designs

This study is conducted under the ethical approval by the scientific committee of department of pathology and poultry diseases, college of veterinary medicine, university of mosul, under the approval number VetMed-1246 dated 11-09-2021.

ProbChick®

ProbChick® contains 10 billion CFU/gram of various strains of different beneficial bacteria like Lactobacillus plantarum, Lactobacillus sporogenes, Lactobacillus acidophilus, Streptococcus thermophilus, Bacillus subtilis, Bifidobacterium bifidum and Saccharomyces cerevisiae.

Experimental designs

A total of 200 one-day-old chicks were included in the current study and divided randomly into five groups (40 chicks in each group). The first group was considered as the control group left without any treatment all over the experiment. The second group (positive control) was treated with ProbChick® in daily doses of 1 gram/litter of drinking water. The third group (negative control) was orally inoculated with E. coli at dose 0.5 ml containing 6x10^8 CFU/ml at the 7th day of age treated with ProbChick® in a dose of 1 gram/liter of drinking water, daily till the end of the experiment. The fifth group (protective group) was orally inoculated with E. coli at dose 0.5 ml containing 6x10^8 CFU/ml, was also treated with ProbChick® in a dose of 1 gram/liter of drinking water, daily till the end of the experiment. Ten birds from each group were euthanized at the end of each first, second, third and fourth week of age. A thin blood smear was stained with Wright-Giensa to calculate the stress index [12]. Weekly body weight, weekly feed consumption, food conversion ratio [13]. Samples from the liver and kidney were fixed in 10% neutral buffered formalin [14].

E. coli O157:H7 isolate and infective dose

The pure E. coli O157:H7 isolate was obtained from RNA lab, left coast of Mosul, Iraq; these bacteria were isolated from poultry cases suffered from colisepticemia, in which E. coli O157:H7 were isolated on E. coli chromogen agar media and identified by PCR in RNA lab. The pure culture colony was re-cultured on E. coli O157 chromogen agar media, and the infective dose was prepared in 0.5 ml to be orally administered at a concentration of 6x10^8 CFU/ml [15].

Histopathology

Samples of liver and kidney were fixed in 10% neutral buffered formalin for 72 hours at least, later represented samples were collected and dehydrated by ethyl alcohol, cleared in xylene, infiltrated and embedded in hot paraffin, the tissue blocks were then sectioned at 5µm and stained with Harris’ hematoxylin and eosin [16].

Statistical analysis

The means included in the current study were analyzed using one-way ANOVA, with Duncan’s test as post Hock test, at P<0.05.

Results

Average body weight

The effects of E. coli infection and probiotic (ProbChick®) are shown in table 1. On day one no significant variation p<0.05 among the BW means in all groups. On week 1 the chicks in G2 showed the highest BW means 162.6 gm. On week 2 also the chicks in G2 showed the highest BW which significantly higher p<0.05 among all groups 446.5 gm, G1 and G5 are significantly higher than G3 and G4 with no significant variation between them. On Week 3 and week 4 the higher BW means are shown in G2 997.7 gm, 1610 gm, respectively.
Body weight gain and feed conversion rate

The average weekly weight gains and feed conversion rate (FCR) are summarized in Table 2. The effects of *E. coli* and probiotic (Probchick®) on weekly weight gain at week 1 showed that the G1 and G2 are significantly higher p<0.05 among all groups with no significant differences between them, G4, G5 are significantly higher p<0.05 than G3 with no significant differences between them. On week 2 the G1 are significantly higher p<0.05 among all groups, and G3 showed less weekly weight gain among all groups. On Week 3 and week 4 the chick in G2 showed higher weekly body weight gain with significant among all groups at p<0.05. The FCR was higher in G2 1.34 among all groups and less value of FCR were in G3 1.79.

Liver relative weight

The effects of *E. coli* and probiotic (Probchick®) on liver relative weight are showed in table 3. On week 1 the chick in G3, G4 and G5 showed significant difference with other groups at P<0.05 and with no significant difference between the three groups. On week 2 G1, G4 and G5 are significantly higher p<0.05 than G2 and G3 with no significant difference between them. On week 3 the G3 are significantly higher p<0.05 among all groups, and there is no significant variation between the others groups. On week 4 the G3 and G4 are significantly higher p<0.05 than others groups with no significant difference between them.

Kidney relative weight

The effects of *E. coli* and probiotic (Probchick®) on kidney relative weight are showed in Table 4. On week 1 the G1, G3, G4 and G5 are significantly higher p<0.05 than G2 with no significant difference between them. On week 2, 3 and week 4 the G3, G4 and G5 are significantly higher p<0.05 than G1 and G2 with no significant difference between them.

TABLE 1. Show effects of *E. coli* and probiotic on weekly average body weight

<table>
<thead>
<tr>
<th>Groups</th>
<th>Age (Average Body weight [gm] ± SD)</th>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day one</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1</td>
<td>40.1±0.4*</td>
<td>158.6±0.7*</td>
<td>417.2±2.7*</td>
<td>889.2±4.8*</td>
<td>1456.6±7.5*</td>
</tr>
<tr>
<td>G2</td>
<td>41.6±0.4*</td>
<td>446.5±6.9*</td>
<td>997.7±4.9*</td>
<td>1610.0±6.9*</td>
<td></td>
</tr>
<tr>
<td>G3</td>
<td>40.8±0.9*</td>
<td>370.5±5.6*</td>
<td>775.8±7.6*</td>
<td>1291.6±6.0*</td>
<td></td>
</tr>
<tr>
<td>G4</td>
<td>40.1±0.5*</td>
<td>387.5±3.8*</td>
<td>795.8±7.7*</td>
<td>1340.0±6.2bd</td>
<td></td>
</tr>
<tr>
<td>G5</td>
<td>40.7±0.9*</td>
<td>406.1±2.7*</td>
<td>887.1±9.2*</td>
<td>1400.0±5.7w</td>
<td></td>
</tr>
</tbody>
</table>

-Different letters within the same column mean statistically significant differences at p < 0.05.

G1: Control group
G2: Positive Control group (Probchick® only)
G3: Negative control group (*E. coli* infection)
G4: Therapeutic group (*E. coli* infection day 1 Probchick® day 7)
G5: Protective group (*E. coli* infection and Probchick® in the same day)

TABLE 2. Show Effects of *E. coli* and probiotic on weekly body weight gain and FCR

<table>
<thead>
<tr>
<th>Groups</th>
<th>Weeks</th>
<th>Average body weight gain [gm] ± SD</th>
<th>FCR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Week 1</td>
<td>Week 2</td>
<td>Week 3</td>
</tr>
<tr>
<td>G1</td>
<td>118.5±0.7*</td>
<td>258.6±1.8*</td>
<td>472.0±5.6*</td>
</tr>
<tr>
<td>G2</td>
<td>121.0±0.8*</td>
<td>283.9±1.7*</td>
<td>551.2±5.9*</td>
</tr>
<tr>
<td>G3</td>
<td>100.5±0.6*</td>
<td>229.2±1.9*</td>
<td>405.3±2.4*</td>
</tr>
<tr>
<td>G4</td>
<td>104.1±0.7*</td>
<td>243.3±1.5*</td>
<td>408.3±3.8*</td>
</tr>
<tr>
<td>G5</td>
<td>104.7±0.9*</td>
<td>260.7±1.9*</td>
<td>481.0±3.3*</td>
</tr>
</tbody>
</table>

-Different letters within the same column mean statistically significant differences at p < 0.05.
Histopathological changes

The result of current study showed that the control group showed normal histological features in both liver (Fig. 1) and kidney tissue (Fig. 2). In addition, the same result was recorded in group that consume ProbChick® only were the liver (Fig. 3) and kidney (Fig. 4) showed normal histological architectures.

In contrast the group infected with E. coli only after 7 days of infection showed massive infiltration of inflammatory cells, with hyperplasia of fibrocytes, and other renal tubules showed coagulative necrosis, with complete destruction of glomerular tuft, while at 14 days of infection the kidney showed coagulative necrosis affected most of renal tubules, hypercellularity of glomerular tuft, infiltration of lymphocytes, at 21 days of infection kidney showed massive fibrosis in partial part of affected kidney, in compare with necrotic and inflamed tissue, the glomeruli showed complete loss of function and appeared as cellular debris, and interstitial fibrosis which surrounded few necrotic tubules, with infiltration of inflammatory cells (Fig. 5). In liver sections at 7 days of infection there was small vacuoles in cytoplasm of hepatocytes, infiltration of macrophages around portal area, deposition of collagen fibers around portal area, at 14 days of infection there was small vacuoles in cytoplasm of hepatocytes, infiltration of macrophages around portal area, while at 21 days of infection liver sections showed presence of small multiple vacuoles in cytoplasm of hepatocytes, other hepatocytes showed coagulative necrosis, increase in number of Kupffer cells, at 28 days of infection liver tissue showed coagulative necrosis in the hepatocytes around portal area, hyperplasia of bile cuniculi, infiltration of macrophages (Fig. 6).

In the fourth group that infected with E. coli at first day then consume ProbChick® after one week, the result showed improving in the histopathological lesions in compare with the third group (infected with E. coli only) in general there was hyperplasia in portal area, infiltration of inflammatory cells, hepatocytes showed vacuolar degeneration, necrotic changes in other hepatocytes, and deposition of collagen fiber around portal area (Fig. 7). In general, the same result was obtained in kidney were the lesions can

TABLE 3. Show Effects of E. coli and probiotic on liver relative weight

<table>
<thead>
<tr>
<th>Groups</th>
<th>Weeks (liver relative weight [gm] ± SD)</th>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>3.38±0.15<sup>a</sup></td>
<td>3.08±0.15<sup>a</sup></td>
<td>2.62±0.16<sup>a</sup></td>
<td>1.82±0.18b</td>
<td></td>
</tr>
<tr>
<td>G2</td>
<td>3.84±0.15<sup>a</sup></td>
<td>2.82±0.18<sup>b</sup></td>
<td>2.62±0.15<sup>a</sup></td>
<td>1.80±0.17b</td>
<td></td>
</tr>
<tr>
<td>G3</td>
<td>4.13±0.21<sup>b</sup></td>
<td>2.89±0.12<sup>b</sup></td>
<td>2.81±0.12<sup>a</sup></td>
<td>2.40±0.12<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>G4</td>
<td>4.01±0.24<sup>a</sup></td>
<td>3.00±0.19<sup>a</sup></td>
<td>2.68±0.14<sup>b</sup></td>
<td>2.22±0.14<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>G5</td>
<td>4.05±0.22<sup>a</sup></td>
<td>3.13±0.12<sup>a</sup></td>
<td>2.63±0.12<sup>a</sup></td>
<td>1.90±0.21<sup>a</sup></td>
<td></td>
</tr>
</tbody>
</table>

- Different letters within the same column mean statistically significant differences at p < 0.05.

TABLE 4. Show Effects of E. coli and probiotic on kidney relative weight

<table>
<thead>
<tr>
<th>Groups</th>
<th>Weeks (kidney relative weight [gm] ± SD)</th>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>0.787±0.039<sup>a</sup></td>
<td>0.386±0.017<sup>b</sup></td>
<td>0.389±0.053<sup>b</sup></td>
<td>0.437±0.031<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>G2</td>
<td>0.657±0.031<sup>b</sup></td>
<td>0.363±0.011<sup>b</sup></td>
<td>0.379±0.051<sup>b</sup></td>
<td>0.481±0.021<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>G3</td>
<td>0.792±0.041<sup>a</sup></td>
<td>0.404±0.021<sup>b</sup></td>
<td>0.459±0.021<sup>a</sup></td>
<td>0.594±0.034<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>G4</td>
<td>0.793±0.015<sup>a</sup></td>
<td>0.404±0.029<sup>a</sup></td>
<td>0.469±0.059<sup>a</sup></td>
<td>0.551±0.037<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>G5</td>
<td>0.795±0.031<sup>a</sup></td>
<td>0.409±0.012<sup>a</sup></td>
<td>0.448±0.024<sup>a</sup></td>
<td>0.532±0.029<sup>a</sup></td>
<td></td>
</tr>
</tbody>
</table>

- Different letters within the same column mean statistically significant differences at p < 0.05.
be described as coagulative necrosis in renal tubules, hyper cellularity of the glomerular tuft, infiltration of inflammatory cells in the interstitial tissue, sloughing of necrotic epithelial cells as cellular debris inside renal lumen, and hemorrhage (Fig. 8).

While in the fifth group which infected with *E. coli* and consume ProbChick® at the same day, the result of histopathological examination showed an increase in improving in tissue histology in compare with the fourth and third groups, were in general, Liver sections showed hemorrhages between hepatocytes, dilatation of sinusoids, hepatocytes showed vacuolar degeneration (Fig. 9). The same were observed in kidney and the lesions was recorded are necrosis and sloughing of renal tubules, vacuolar degeneration in other tubules, interstitial edema (Fig. 10).

Fig. 1. Control group (G1); (a) 7 days, (b) 14 days, (c) 21 days, (d) 28 days. Liver sections showed normal histological architectures of liver histology, composed cord arrangement of hepatocytes around central vein (arrow), and portal area (arrow). H&E.

Fig. 2. Control group (G1); (a) 7 days, (b) 14 days, (c) 21 days, (d) 28 days. Kidney sections showed normal histological architectures of kidney histology, composed renal glomeruli (arrow), and different types of renal tubules (arrow). H&E.
Fig. 3. ProbChick® group (G2); (a) 7 days, (b) 14 days, (c) 21 days, (d) 28 days. Liver sections showed normal histological architectures of liver histology, composed cord arrangement of hepatocytes around central vein (arrow), and portal area (arrow). H&E.

Fig. 4. ProbChick® group (G2); (a) 7 days, (b) 14 days, (c) 21 days, (d) 28 days. Kidney sections showed normal histological architectures of kidney histology, composed renal glomeruli (arrow), and different types of renal tubules (arrow). H&E.

Fig. 5. *E. coli* group (G3); Kidney sections. (a) after 7 days of infection. Showed massive infiltration of inflammatory cells (arrow), with hyperplasia of fibrocytes (arrow), and other renal tubules showed coagulative necrosis (arrow), with complete destruction of glomerular tuft (arrow). (b) after 14 days of infection. Showed coagulative necrosis affected most of renal tubules (arrow), hyper cellularity of glomerular tuft (arrow), infiltration of lymphocytes (arrow). (c) after 21 days of infection. Showed massive fibrosis in partial part of affected kidney (arrow), in compare with necrotic and inflamed tissue (arrow), the glomeruli showed complete loss of function and appeared as cellular debris (arrow), with increase in thickness of Bowman’s capsule (arrow), with interstitial fibrosis (arrow), which surrounded few necrotic tubules (arrow). (d) after 28 days of infection. Showed massive fibrosis in whole kidney tissue (arrow), with capsular fibrosis (arrow), the glomeruli showed complete loss of function and appeared as cellular debris (arrow), with complete destruction of renal tubule structure and appeared as cellular debris (arrow), and interstitial fibrosis which surrounded few necrotic tubules (arrow), with infiltration of inflammatory cells (arrow). H&E.
Fig. 6. E. coli group (G3); Liver sections. (a) after 7 days of infection. Showed presence of small vacuole in cytoplasm of hepatocytes (arrow), infiltration of macrophages around portal area (arrow), deposition of collagen fibers around portal area (arrow). (b) after 14 days of infection. Showed presence of small vacuole in cytoplasm of hepatocytes (arrow), infiltration of macrophages around portal area (arrow). H&E. (c) after 21 days of infection. Showed presence of small vacuole in cytoplasm of hepatocytes (arrow), other hepatocytes showed coagulative necrosis (arrow), increase in number of Kupffer cells (arrow). (d) after 28 days of infection. Showed coagulative necrosis in the hepatocytes around portal area (arrow), hyperplasia of bile cuniculi (arrow), infiltration of macrophages (arrow). H&E.

Fig. 7. E. coli at first day the ProbChick® after 7 days group (G4); (a) 7 days, (b) 14 days, (c) 21 days, (d) 28 days. Liver sections showed hyperplasia in portal area (arrow), infiltration of inflammatory cells (arrow), hepatocytes showed vacuolar degeneration (arrow), necrotic changes in other hepatocytes (arrow), and deposition of collagen fiber around portal area (arrow). H&E.
Fig. 8. E. coli at first day the ProbChick® after 7 days group (G4); (a) 7 days, (b) 14 days, (c) 21 days, (d) 28 days. Kidney sections showed coagulative necrosis in renal tubules (arrow), hypercellularity of the glomerular tuft (arrow), infiltration of inflammatory cells in the interstitial tissue (arrow), sloughing of necrotic epithelial cells as cellular debris inside renal lumen (arrow), and hemorrhage (arrow). H&E.

Fig. 9. E. coli and ProbChick® at first day group (G5); (a) 7 days, (b) 14 days, (c) 21 days, (d) 28 days. Liver sections showed hemorrhages between hepatocytes (arrow), dilatation of sinusoids (arrow), hepatocytes showed vacuolar degeneration (arrow). H&E.
Discussion

Adding probiotics to poultry feed have a great impact in the last two decades, since they have a major effect on other pathogenic microorganisms that infect chickens and lead to serious conditions that cause either high mortality rate or significant economic losses in this industry [17]. Infection with pathogenic \textit{E. coli} cause a lethal condition to poultry due to renal and hepatic dysfunction, in which both of these organs play a major role in the metabolism and excretion of food that absorbed from intestines [18]. The result of current study showed that adding Probchick® to chicken feed will have caused a significant improve in the weekly body weight, weekly weight gain, FCR, liver relative weight, and kidney relative weight in all group in compare with control group and group infected with \textit{E. coli} only, this result where in agreements with other studies done by Marangoni et al. [19], Gupta and Das [20], Mountzouri et al. [21], Atela et al. [22], and Zulkifli et al. [23]. These improving of meat quality properties can be explained by the effect of these microorganism that present in the Probchick® which have a great impact at their site of action in the intestines by prevent and competitive with pathogenic bacteria and prevent them from attached and cross the intestinal wall and causing infection in these host which considered as the major source of stress in poultry production [24].

The result of current study showed that oral administration of chicks with 6×10^8 CFU/ml will cause the pathognomic lesions in the kidney that represented by interstitial nephritis, fibrosis and cystic kidney, in addition to presence of inflammatory reaction in the liver represented by mononuclear infiltration of inflammatory cells in the portal area and around central vein. These results were found similar to those obtained by Elfadil et al. [25], Gomis et al. [26], and Norton et al. [27]. The result also indicates that feed of Probchick® as a therapeutic or preventive measures will cause decrease in the severity of these lesions and caused reduction in the damages to renal tissue specially since the fibrous tissue formation and cystic kidney were not recorded and focal infiltration of inflammatory cells were the predominant lesions that were observed during different period of experiment.

Conclusions

We conclude that adding Probchick® to broiler feed will enhance their meat quality and production properties in addition, adding this probiotic will cause noticeable reduction in the severity of lesions that induced by experimental infection with pathogenic \textit{E. coli}.

Acknowledgments
The authors wish to extend their thanks to College of Veterinary Medicine, University of Mosul, Mosul, Iraq to support current study.

Conflict of interest
No conflict.

Funding Statement
No funding support were obtained in current study

References

THE EFFECTS OF PROBCHICK® ON E. coli O157:H7 EXPERIMENTAL INFECTION...

Tahir al-Hamadi and Seifan Saeed Al-Mohamed

Department of Veterinary Pathology and Bovine Dairy Diseases - College of Veterinary Medicine - Mosul University – Mosul, Iraq.

Infecting poultry with E. coli O157:H7 is a significant problem in the production of broiler chickens. It has been shown that probiotics can reduce the incidence of E. coli O157:H7 infection in chickens.

The study was conducted to evaluate the effects of probiotics on the experimental infection of E. coli O157:H7 in broiler chickens. The study was conducted on 200 chicks divided into five groups. The first group was considered the control group. The second group was given probiotics and water. The third group was given E. coli O157:H7 orally on the first day of age. The fourth group was given E. coli O157:H7 orally on the first day of age followed by probiotics in water. The fifth group was given probiotics for seven days starting on the first day of age followed by probiotics in water on the first day of age.

The results showed that the use of probiotics had a positive effect on weight gain, feed conversion ratio, and liver and kidney weights. The probiotics also reduced the negative effects of E. coli O157:H7 infection on the production and health of the chickens.