Effect of Joint Inflammation on Piroxicam Pharmacokinetics in Rats

Aziza M Amer*, Hana A. Mabrok**

*Pharm. Dept., Faculty of Veterinary Medicine, Cairo University, Egypt
**Animal Health Research Institute, Dokki, Cairo, Egypt.

Introduction

Piroxicam is one of the nonsteroidal anti-inflammatory drugs of the oxicam class commonly used in both veterinary and human medicine. Anti-inflammatory and pharmacokinetics of piroxicam (20 mg/kg b. wt.) via intramuscular (i.m) injection were studied in normal and joint inflamed male rats. Injection of complete Freund’s adjuvant in the right hind rat’s paw resulted in biphasic edematous inflammatory thickness, immediate acute phase started at the 4th day followed by a chronic phase with marked edema at day 14 of injection. Treatment with piroxicam (20 mg/kg b.wt.) for 28 days resulted in significant decrease in thickness of edema by 46.15, 57.40, 47.16, 53.57, 45.65 and 51.13% in days 4, 10, 17, 21, 24 and 28 days, respectively.

Treatment of arthritic rat with 20 mg/kg b. wt i.m piroxicam for 28 days showed a significant decrease in the arthritic index (2.00 ± 0.09 and 0.80 ± 0.01) from day 10 to day 28 as compared with arthritic index in non-treated (2.80 ± 0.18 and 6.20 ± 0.15), respectively.

Plasma samples were collected after 2, 4, 6, 8, 10, 12, 24 and 48 hours for analysis of plasma piroxicam concentration. The obtained data showed a non-significant increase in plasma piroxicam concentration in joint inflamed rats than that of normal rats. The calculated pharmacokinetic parameters revealed a short t0.5 absorption (t0.5ab) 2.10 ± 0.345 hrs and 1.75 ± 0.100 hrs, and prolonged elimination half-life time (t0.5el) 14.01 ± 0.730 and 20.61 ± 0.921 hrs in normal and joint inflamed rats, respectively. Slow elimination rate (C/F) (0.12 ± 0.003 and 0.08 ± 0.003 (mg/kg)/ (μg/ml)/h), t0.5el as well as prolonged MRT (23.24 ± 0.666 and 32.26 ± 1.261 hrs) in normal and joint inflamed rats, respectively.

In conclusion: Piroxicam in dose of 20 mg/kg/ b.wt via i.m has an anti-inflammatory effect in rat with joint inflammation and has non-significant higher and prolonged plasma concentration in inflamed joint rats than in normal.

Keywords: Piroxicam, Anti-inflammatory, Pharmacokinetics, Rat, Arthritis.

Corresponding author: aziza.mahrous@gmail.com
DOI: 10.21608/ejvs.2018.5311.1049
©2017 National Information and Documentation Centre (NIDOC)
suspended in paraffin oil [9]. Complete Freund’s adjuvant is the most effective in potentiating cellular immunity and humeral antibody response to injected immunogenic agents. This activity is a result of sustained release of antigen from the oily adjuvant deposit which stimulates local innate immune response resulting in enhanced adaptive immunity [10-12].

Rapid onset and progression of polyarticular inflammation are the major characters of AIA. CFA injection into rat’s paws resulting in an acute non-specific inflammation and swelling which lasts during the first week. In the non-injected hind paw a second immunologically-induced swelling occurs thereafter and lasts up to 4 weeks after adjuvant injection [13]. Cartilage damage is less severe than that in rheumatic arthritis, while bone destruction is more prominent, AIA arthritic rats, activated T cells can be detected in the inflamed joints. The infiltrating T cells into inflamed joint originate from the spleen, draining lymph nodes. Peyer’s patches and the recirculating T cell pool [14].

Bioavailability of the drug not interfered with food and antacids. Piroxicam is approximately 99% bound to plasma proteins. Despite its high plasma binding, the drug readily penetrates into synovial fluid. Piroxicam has a long elimination half-life of about 50 h. Elimination of the parent drug is mainly the result of biotransformation. The elimination of piroxicam is impaired in some elderly patients, resulting in a high interindividual variability in average steady state levels following a standard 20 mg/day dosage regimen [15].

It was suggested that the drug has enterohepatic circulation [16]. Concentration maximum ($C_{max} = 543.2 \pm 64.4 \mu g/ml$), absorption rate constant ($\alpha = 1.2 \pm 0.4 h$), and elimination rate constant ($\beta = 0.4 \pm 0.2 h$) of the male West African Dwarf (WAD) goats were significantly higher ($p < 0.05$) in comparison with C_{max} ($376.9 \pm 61.2 \mu g/ml$), $\alpha (0.8 \pm 0.3 h)$ and $\beta (0.3 \pm 0.1 h)$ of the female goats, respectively [4].

Serial blood samples were collected for quantification of piroxicam in plasma. Piroxicam was readily absorbed at both dosages, and no adverse effects were observed. Plasma concentrations peaked at 3.67 hr with a concentration of 4.00 μg/ml for the lower dosage, and at 0.83 hr at 8.77 μg/ml for the higher dosage [17].

Aim of study: It planned to study clinical pharmacology that can provide comparative information about the pharmacokinetics of piroxicam in arthritic rat as compared with normal one to explore the possible effect of disease.

Material and Methods

Animals

Adult male albino rats weighing 200–250 gm, purchased from privat animal house, animals were kept for acclimatization at 25°C humidity 60% and natural light condition. Rats were fed on balanced ration and allowed for access to water.

Induction of chronic inflammation

Experimental chronic arthritic inflammation was induced according to the method of Philippe et al. [18], by single subcutaneous injection of 100 μl of heat-killed *Mycobacterium tuberculosis* suspended (Sigma, USA) in a sterile paraffin oil (10 mg/ml) into the subplantar region of rat’s right hind paw. This model is thought to share many features with human rheumatoid arthritis. It is considered as one of the most widely used models for evaluating the anti-inflammatory and the anti-arthritic activities of compounds.

Inflammation assessment

The edematous thickness was measured by mean of micrometer (mm) immediately before arthritis induction on day zero (basal thickness) and on days 4, 7, 10, 14, 17, 21, 24, and 28, thereafter results are plotted graphically versus time [19].

Arthritic assessment

Induction of arthritic inflammation (as edematous thickness) was measured by micrometer immediately before arthritis induction on day zero (basal thickness) and after Freund’s adjuvant injection [19].

Arthritic index (score)

For determination of arthritic index, the degree of arthritis severity was monitored daily and scored as follows: 0 = normal paw, 1 = mild erythema and swelling, 2 = moderate erythema and swelling, 3 = severe erythema and swelling. The maximal possible score per animal was 12 [20]. After complete detection of arthritis induction, Piroxicam was injected, intramuscularly, at day 4. Blood samples were collected at different time intervals for measuring of piroxicam concentration from 2 to 48 hours. Moreover, piroxicam administration continued daily for 28 days for evaluation of piroxicam...
anti-inflammatory activity in adjuvant induced arthritis.

Determination of Piroxicam plasma concentration

Plasma piroxicam concentrations were determined in plasma spectrophotometrically according to the method described by Hobbs and Twomey [16]. Blood samples were withdrawn from the retro-orbital vein at 0, 2, 4, 6, 8, 10, 12, 24 and 48 h, in heparinized tubes, after treatment. The samples were centrifuged at 2000 × g for 15 minutes, 0.2 ml of plasma were acidified with 0.05 ml 1N HCl then extracted with 1 ml dichloroethane. The organic layer was extracted with 0.5 ml carbonate buffer (pH 9) and the optical density of the latter was determined at 355 nm in a spectrophotometer. Standard curve was prepared by spiked Plasma from non-treated animals with different concentrations of piroxicam and treated with the same procedures as treated samples.

Pharmacokinetic (PK) and statistical analyses

The pharmacokinetic analysis of the data was performed using a non-compartmental model using commercially available software program (WinNonlin® software, version 5.2, Pharsight Corporation). A non-compartmental model was fitted to the concentration-time data separately for each rat. The area under the curve (AUC) and the area under the first moment curve (AUMC) were calculated for normal and joint inflamed rats from the piroxicam concentration-time relationship using the trapezoidal method, with the area from the last time point extrapolated to infinity using the following standard equations: kab = 1/MAT (h), absorption half-life (t0.5(ab); T;ab = 0.693×MAT (h). The apparent terminal plasma half-life (t0.5 el) were calculated using the following standard equations: Kab = 1/MAT (h), absorption half-life (t0.5(ab); T;ab = 0.693×MAT (h). The apparent terminal plasma half-life (t0.5 el) was calculated as: t0.5 el = 0.693×MRT. The elimination rate constant kel was calculated as: kel = 1/MRT. The apparent volume of distribution of the central compartment (V/f) was calculated as: V/f = Dose/C0, where C0 was the extrapolated plasma concentration immediately after injection (time = 0 min) assuming instantaneous mixing. The time to reach peak concentration (Tmax) following i.m. administration of piroxicam was calculated using the following equation: Tmax = 2.303×logy (kab/kel)/(kab - kel) (h), where logy is the natural logarithm. The peak concentration (Cmax) was calculated using the following equation: Cmax = [(F×Dose×kab)/(V/f ×(kab - kel))×[e-kel×tmax - e-kab×tmax210] (μg/ml) where: e = the base of natural logarithm [21].

Results and Discussion

Piroxicam is anti-inflammatory drug frequently prescribed in animals to reduce pain, fever and inflammation and in the treatment of different clinical conditions such as rheumatoid and mastitis [21]. Inflammatory assessment, Arthritic assessment, Plasma concentration and Pharmacokinetics of piroxicam were studied in normal and experimentally joint inflamed rats after a single i. m injection of 20 mg/kg b.wt.

The obtained results of inflammatory assessment after i.m. injection of piroxicam 20mg/kg b.wt daily for 28 days were presented in Table 1 and Figure 1. These results revealed increase in edema thickness allover 28 days is following injection of complete Freund’s adjuvant in the right hind rat’s paw. The inflammatory edema was biphasic 1. Immediate acute phase with increase in edema thickness starts at the 4th day after adjuvant injection. 2. Followed by chronic phase with marked increase on edema thickness at day 14 of injection.

Treatment with piroxicam (20mg/kg b.wt.) for 28 day resulted in significant decrease in edema thickness allover 28 days of treatment and by 46.15, 50.09, 55.42, 57.40, 47.16, 53.57, 45.65 and 51.13% in days 4, 7, 10, 14, 17, 21, 24 and 28, respectively. Piroxicam has therapeutic effects including anti-inflammatory, analgesic and antipyretic with advantage of once-a-day dosing and therefore, it can be used for acute or long term therapy of arthritis and the response increases over several weeks [2, 5, 6].

Non-steroidal anti-inflammatory drugs (NSAIDs) are the most commonly effectively used drug to relieve pain and decrease inflammation in RA, acute arthritis, osteoarthritis and other inflammatory conditions. Pyroxy cam is one of the NSAIDs has analgesic, anti-inflammatory and antipyretic activities in mice [25] and rats [26]. CFA arthritic rats treated with piroxicam (20 mg/kg b. wt i.m) showed significant decrease in inflammatory in paw edema and arthritic index, these findings confirmed by Matson et al. [27], Williams et al. [28] and Sigurdardottir [29].

The arthritic index (Table 2 and Fig. 2) showed progressive increase in combined...
TABLE 1. Paw edema thickness (mm) of normal, arthritic and arthritic piroxicam treated rats (20 mg/kg b. wt for 28 days (N=10, Mean ± SD)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Time in days</th>
<th>4</th>
<th>7</th>
<th>10</th>
<th>14</th>
<th>17</th>
<th>21</th>
<th>24</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td></td>
<td>2.10</td>
<td>2.12</td>
<td>2.00</td>
<td>2.11</td>
<td>2.10</td>
<td>2.08</td>
<td>2.17</td>
<td>2.19</td>
</tr>
<tr>
<td>Arthritis</td>
<td></td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
</tr>
<tr>
<td>Arthritis + piroxicam</td>
<td></td>
<td>0.09</td>
<td>0.08</td>
<td>0.06</td>
<td>0.08</td>
<td>0.06</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>(20 mg/kg b. wt)</td>
<td></td>
<td>5.20</td>
<td>5.21</td>
<td>5.07</td>
<td>5.40</td>
<td>5.30</td>
<td>5.17</td>
<td>4.60</td>
<td>4.50</td>
</tr>
<tr>
<td>% Decrease in oedema thickness</td>
<td></td>
<td>46.15</td>
<td>50.09</td>
<td>55.42</td>
<td>57.40</td>
<td>47.16</td>
<td>53.57</td>
<td>45.65</td>
<td>51.13</td>
</tr>
</tbody>
</table>

a. Significant from normal at P < 0.05 b. Significant from arthritis at P< 0.05.

Fig. 1. Levels of paw edema thickness (μm) of normal, arthritic and arthritic piroxicam treated rats (20 mg/kg b. wt for 28 days

TABLE 2. Arthritic index of arthritic and arthritic piroxicam treated rats (20 mg/kg b. wt for 28 days (N=10, Mean ± SD)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Time in days</th>
<th>4</th>
<th>7</th>
<th>10</th>
<th>14</th>
<th>17</th>
<th>21</th>
<th>24</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arthritis</td>
<td></td>
<td>2.20</td>
<td>2.21</td>
<td>2.80</td>
<td>4.40</td>
<td>4.80</td>
<td>5.22</td>
<td>5.60</td>
<td>6.20</td>
</tr>
<tr>
<td>Arthritis + piroxicam</td>
<td></td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
</tr>
<tr>
<td>(20 mg/kg b. wt)</td>
<td></td>
<td>0.01</td>
<td>0.10</td>
<td>0.18 a</td>
<td>0.12</td>
<td>0.10</td>
<td>0.20</td>
<td>0.17</td>
<td>0.15</td>
</tr>
<tr>
<td>% Decrease in arthritis</td>
<td></td>
<td>0.80</td>
<td>2.80</td>
<td>2.20</td>
<td>2.00</td>
<td>2.01</td>
<td>2.02</td>
<td>0.91</td>
<td>±</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.12</td>
<td>0.11</td>
<td>0.27</td>
<td>0.09 a</td>
<td>0.02 a</td>
<td>0.03 a</td>
<td>0.01 a</td>
<td>0.01 a</td>
</tr>
</tbody>
</table>

a. Significant from arthritis at P < 0.05.

adjuvant induced arthritic rat from 10 to 28 days. Treatment with piroxicam (20 mg/kg b. wt i.m) for 28 days in arthritic rats (Table 2) revealed a significant decrease from 10 to 28 days.

Chronic rheumatic arthritis is an inflammatory condition characterized by synovial hyperplasia and progressive joint damage [23]. Researchers suggested that i.m injection of the Complete Freund’s Adjuvant (CFA) in rats induce inflammatory condition most closely similar to that in human condition. Injection of CFA in rats induced arthritis characterized by acute increase in paw edema thickness and arthritis index, the acute phase was followed by chronic phase with permanent inflammatory edema persisted up to the 4th week. These results are agreed with that obtained by Swingle [13] and Cook and Nickerson [24].

Plasma piroxicam concentration after i.m injection (20 mg/kg b.wt.) started by 2 hrs after injection (3.36 ± 0.62), the highest level was at 8 hrs (6.31± 0.01) followed by gradual decrease to reach 1.98 ± 0.01 at 48 hrs in normal rats; while in joint inflamed rate it was 4.50 ± 0.02 at 2 hrs to reach highest level at 8 hrs (7.89± 0.22) and at 48 hrs (2.67 ± 0.17) in joint inflamed rats. This result showed that piroxicam plasma concentration was generally higher in joint inflamed rats than normal ones at all intervals (Table 3, Fig 3). Maximum plasma concentrations were reached within 6-8 h, this time was reported to be varied between 1 and 6 h [30]. Plasma concentration persisted until 48 hours in both normal and joint inflamed rats. These results showed a non-significant increase in piroxicam plasma concentrations in joint inflamed than normal rats.

TABLE 3. Plasma piroxicam concentration after i.m injection (20 mg/kg b.wt.) in normal and joint inflamed rats (N=10, Mean ± SD)

<table>
<thead>
<tr>
<th>Time/ hrs</th>
<th>Normal</th>
<th>Joint inflamed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SD</td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>2</td>
<td>3.36 ± 0.62</td>
<td>4.50 ± 0.02</td>
</tr>
<tr>
<td>4</td>
<td>5.67 ± 0.54</td>
<td>6.30 ± 0.32</td>
</tr>
<tr>
<td>6</td>
<td>6.31 ± 0.01</td>
<td>7.22 ± 0.04</td>
</tr>
<tr>
<td>8</td>
<td>6.31 ± 0.01</td>
<td>7.89 ± 0.22</td>
</tr>
<tr>
<td>10</td>
<td>5.66 ± 0.19</td>
<td>6.82 ± 0.29</td>
</tr>
<tr>
<td>12</td>
<td>5.12 ± 0.08</td>
<td>5.80 ± 0.01</td>
</tr>
<tr>
<td>24</td>
<td>2.19 ± 0.05</td>
<td>3.61 ± 0.01</td>
</tr>
<tr>
<td>48</td>
<td>1.98 ± 0.01</td>
<td>2.67 ± 0.17</td>
</tr>
</tbody>
</table>

Fig.2. Levels of arthritic index of arthritic and arthritic piroxicam treated rats (20 mg/kg b. wt) for 28 days
The calculated pharmacokinetic parameters (Table 4) showed a short t0.5 absorption (t0.5ab) 2.10 ± 0.345 hrs and 1.75 ± 0.100 hrs, and prolonged elimination half-life time (t0.5el) 14.01 ± 0.730 and 20.61 ± 0.921 in normal and joint inflamed rats, respectively. The obtained data showed slow elimination rate (CL/F) (0.12 ± 0.003 and 0.08 ± 0.003 (mg/kg)/(μg/ml)/h), which supported by the prolonged t0.5el as well as prolonged MRT (23.24 ± 0.666 and 32.26 ± 1.261 hrs) in normal and joint inflamed rats, respectively.

The pharmacokinetic profiles of piroxicam (20mg/kg b.wt i.m) in male rates showed that the Cmax in joint inflamed rat (7.08 ± 0.059μg/ml) is higher than that of normal (6.06 ± 0.146μg/ml) at long Tmax 6.80±0.234 hrs in inflamed joint than in normal (6.72±0.683hrs) (Table 2). The maximum tolerated dose in dog was 1 mg/kg every 48 h. But the acceptable dose for dog is 0.3 mg/kg per os every 24 h [31]. The time of peak concentration in rats is 2.56 h [32].

Piroxicam is rapid absorbed in inflamed joint rats with short absorption half-life (1.75 ± 0.100 h) than in normal rats (t0.5ab = 2.10± 0.345 h). The elimination half-life time (t0.5el) is longer (20.61±0.921 hrs) in inflamed joint rats than in normal (14.01±0.730 hrs) with prolonged mean residence time (MRT) 32.26 ± 1.261 h in diseased rats in comparison with normal 23.24 ± 0.666 h. The half-life was 2–9 h in piroxicam dose of 3 and 10 mg/kg body weight in rabbit, rats and rhesus monkey as well as 45 h in beagle dog [19, 33, 34] The plasma half-life of Piroxicam (1–2 mg/kg per os) is 1.7 h in mice [35]. Piroxicam is bound to plasma proteins, and has a half-life of 50 h in humans and is also excreted in urine and faces [36].

These results indicated rapid absorbed and slow eliminated of Piroxicam in inflamed joint rats than normal ones. These results supported by prolonged higher plasma concentration in inflamed joint rats than in normal and higher area under curve AUC0–t (206.86± 3.414 μg/ml/h and 152.17 ± 2.352μg/ml/h) AUC0and –inf (264.46± 8.689 325 μg/ml/h and 170.92± 4.325μg/ml/h in inflamed joint than in normal rats, respectively.

All obtained results are compatible with the obtained body clearance (CL/F) which was slow in inflamed joint rats (0.08± 0.003μg/ml /h) than in normal (0.12± 0.003μg/ml /h).

Since, piroxicam causes hyper-bilirubinaemia [37] and bilirubin competes for same binding site with piroxicam, the elimination of piroxicam may likely be delayed, and so accounting for 81.9-99% plasma protein bound [4,15,30].

The obtained results showed higher volume of distribution in normal and inflamed joint rats which supported by slow elimination [38, 39] and high effective as anti-inflammatory due to its preferential distribution in inflamed tissue [40].

The differences in the pharmacokinetic
TABLE 4. Pharmacokynetic parameters of piroxicam after i.m injection (20 mg/kg b.wt) in normal and joint inflamed rats (N =10, Mean ± SD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Normal (Mean ± SD)</th>
<th>Inflamed Joints (Mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>μg/ml</td>
<td>10.00 ± 0.578</td>
<td>9.73 ± 0.230</td>
</tr>
<tr>
<td>Kab</td>
<td>1/h</td>
<td>0.34 ± 0.075</td>
<td>0.40 ± 0.022</td>
</tr>
<tr>
<td>Kel</td>
<td>1/h</td>
<td>0.05 ± 0.002</td>
<td>0.03 ± 0.002</td>
</tr>
<tr>
<td>T0.5ab</td>
<td>h</td>
<td>2.10 ± 0.345</td>
<td>1.75 ± 0.100</td>
</tr>
<tr>
<td>T0.5el</td>
<td>h</td>
<td>14.01 ± 0.730</td>
<td>20.61 ± 0.921</td>
</tr>
<tr>
<td>V/F</td>
<td>(mg/kg)/(μg/ml)</td>
<td>2.36 ± 0.070</td>
<td>2.25 ± 0.038</td>
</tr>
<tr>
<td>CL/F</td>
<td>(mg/kg)/(μg/ml)/h</td>
<td>0.12 ± 0.003</td>
<td>0.08 ± 0.003</td>
</tr>
<tr>
<td>Tmax</td>
<td>h</td>
<td>6.72 ± 0.683</td>
<td>6.80 ± 0.234</td>
</tr>
<tr>
<td>Cmax</td>
<td>μg/ml</td>
<td>6.06 ± 0.146</td>
<td>7.08 ± 0.059</td>
</tr>
<tr>
<td>AUC 0-t</td>
<td>μg/ml/h</td>
<td>152.17 ± 2.352</td>
<td>206.86 ± 3.414</td>
</tr>
<tr>
<td>AUC 0-inf</td>
<td>μg/ml/h</td>
<td>170.92 ± 4.325</td>
<td>264.46 ± 8.689</td>
</tr>
<tr>
<td>AUMC</td>
<td>μg/ml/h^2</td>
<td>3975.48 ± 211.712</td>
<td>8542.20 ± 604.079</td>
</tr>
<tr>
<td>MRT</td>
<td>h</td>
<td>23.24 ± 0.666</td>
<td>32.26 ± 1.261</td>
</tr>
</tbody>
</table>

parameters can be attributed to routes of administration [41]. Since about 99% of piroxicam is bound to proteins, its distribution is limited primarily to the extracellular spaces. Nevertheless, it readily penetrates the synovial fluid and is found in concentrations that are approximately 40-50 % [15, 30, 42].

Pharmacokynetic profile of drugs affecting by animal species, diseased condition, age, sex, values of Cmax are lower in male than female rat using i.m route [43] and was 543.2 ± 64.4 μg/ml in male goats as compared with 376.9 ± 61.2 μg/ml in female goats [4, 43].

In conclusion: Piroxicam in dose 20mg/kg b.wt i.m has anti-inflammatory effect in rat with joint inflammation and has non-significant higher and prolonged plasma concentration in inflamed joint rats than in normal.

Ethical approval

This study was approved from Institutional Animal Ethics Committee and in accordance with local laws and regulations.

Authors’ Contributions

AMA and HAM designed and planned this study, drafted and revised the manuscript, shared, samples collection, performing the tests, manuscript writing and data analysis. M.I. collects tissue samples and histological study. Authors read and approved the final manuscript.

Acknowledgments

The authors thank department of pharmacology, faculty of Vet. Med., Cairo University. Animal Health Research Institute, El-Fayom. El Nasser Company. The authors declared that work was self-funded.

Conflict of Interests:

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

2. Iwabe, S., Ramírez-López, L. and Juárez-

(Received 03/10/2018; accepted 05/11/2018)
EFFECT OF JOINT INFLAMMATION ON PIROXICAM PHARMACOKINETICS

Haneen Ahmed Mabrouk* and Ezizah Mohrous Gomr*
Department of Pharmacology - College of Veterinary Medicine - Cairo University, Egypt.**

Piroxicam is one of the non-stereoidal anti-inflammatory drugs (NSAIDs) used commonly in both veterinary and human medicine. It is used for both acute and chronic inflammation. In this study, the study was conducted in rats with a single dose of 20 mg/kg (20 mg/kg) of piroxicam injected in the right thigh muscle of rats with a subacute joint inflammation model, started from the fourth day. The acute stage lasted four days, followed by a chronic stage with obvious edema in the fourth day. The treatment with piroxicam (20 mg/kg) started from the 28th day of age. The results showed a significant decrease in edema size by approximately 28% of body weight (20 mg/kg) on the 10th day. The analysis of blood plasma samples showed a significant increase in piroxicam concentration in the inflamed rats compared to the normal rats. The pharmacokinetic parameters, such as elimination half-life (t0.5), elimination rate constant (ke), and area under the curve (AUC), showed no significant differences between the normal and inflamed rats. In conclusion, piroxicam at a dosage of 20 mg/kg had no significant effect on the pharmacokinetics of piroxicam in rats.