Introduction

Seafoods, particularly fish, shrimp, crab, oyster and shellfish, are significant economic and nutrient seafoods. They are rich sources of lipids and indispensable fatty acids and also minerals including magnesium, sodium, calcium, potassium, copper zinc, iron and selenium [1]. They are so popular among people in most regions of the world [1]. Thus, they should have an acceptable level of hygiene and safety [1-3].

Vibrio species are associated with live seafood as they form part of the indigenous microflora of the sea environment [2]. Foodborne infections with *Vibrio* spp. are common all around the world and mainly associated with consumption of raw or undercooked seafoods [3]. Foodborne diseases caused by them are familiar with gastroenteritis, septicemia and even hospitalization and death [2, 3]. Only a few species, particularly *V. parahaemolyticas*, are frequently associated with human foodborne diseases caused by seafood’s consumption, nevertheless there are sporadic outbreaks of foodborne diseases caused by other

VIBRIO species, particularly *V. cholerae, V. parahaemolyticus, V. vulnificus and V. harveyi* are considered as an imperative foodborne pathogens associated with seafood consumption. An existing survey was carried out to determine the incidence and antibiotic resistance of *Vibrio* spp. isolated from diverse kinds of seafood samples. Seven-hundred and forty seafood samples including fish, shrimp, oyster, crab and shellfish were collected from the Boushehr port, Persian Gulf, Iran. Seafood samples were examined by culture method. Identification of *Vibrio* isolates was done by the PCR. Antibiotic resistance of bacteria was assessed by the disk diffusion. Seventy-nine out of 740 (10.67%) seafood samples were contaminated with *Vibrio* spp. Incidence of *V. cholerae, V. parahaemolyticus, V. vulnificus and V. harveyi* amongst the seafood samples was 18.98%, 41.77%, 13.92% and 10.12%, respectively. Incidence of other *Vibrio* species was 15.18%. The uppermost rate of contamination was found in shellfish (14.66%), shrimp (12%) and oyster (12%). The uppermost incidence of resistance was found toward tetracycline, penicillin, gentamicin, ampicillin, erythromycin and streptomycin. The lowermost rate of resistance was found toward vancomycin, nalidixic acid and azithromycin.

Fish, shrimp, crab and oyster samples were considered as the main sources of transmission of *V. cholerae, V. parahaemolyticus, V. vulnificus and V. harveyi* bacteria. Proper cooking of seafoods before consumption and monitor the antibiotic prescription can reduce the risk of transmission of antibiotic resistant-*Vibrio* spp. through seafood consumption. Nevertheless, supplementary surveys are essential to originate more specifics about the impact of *Vibrio* spp. in seafood samples.

Keywords: *Vibrio* species. Incidence, Seafood, Antibiotic resistance.
Vibrio spp. particularly V. cholerae, V. vulnificus and V. harveyi [2, 3].

V. cholerae, the causative agent of cholera, is a natural inhabitant of aquatic environments, but despite intensive efforts its ecology is still poorly understood [4]. Cholera is a life-threatening disease associated with abdominal cramps, diarrhea, fever, vomiting and nausea and the appearance of blood and mucus in the stool of infected persons [4]. V. parahaemolyticus infections are considered with abdominal pain, vomiting, watery or bloody diarrhea and gastroenteritis [5]. The bacterium harbored several kinds of virulence factors involved in the pathogenesis of disease. An open wound in skin comes in contact with V. parahaemolyticus is recommended as an infection pathway as well. Main syndromes caused by V. parahaemolyticus comprise gastroenteritis, wound infection, and septicemia [5, 6]. V. vulnificus is an opportunistic human pathogen that may cause gastroenteritis, necrotizing soft-tissue infections and septicemia, with a boost lethality rate. Consumption of contaminated seafood and exposure of contaminated water are the main ways caused V. vulnificus infections [7, 8]. V. harveyi is found in the aquatic environment and distinct as nonpathogenic for humans; nevertheless, they are pathogenic for marine animals and they, although infrequently, have associated with infections in humans, particularly, wound infections [9].

Antibiotic therapy is one of the best choices for treatment of human vibriosis. However, Vibrio spp. are chiefly resistant toward numerous kinds of antibiotics including aminoglycosides, fluoroquinolone, tetracyclines, sulfonamides, and phenicols. Numerous investigations revealed that the incidence of resistance of Vibrio spp. toward commonly used antibiotic agents had a range between 10 to 100%. Thus, it is essential to assess the antibiotic resistance of Vibrio spp. recovered from seafood samples [10, 11].

Scarc data are available about the role of seafood samples in transmission of Vibrio spp. to human population in Iran. Thus, an existing survey was carried out to assess the incidence and antibiotic resistance of Vibrio spp. isolated from fish, shrimp, crab, oyster and shellfish samples.

Materials and Methods

Ethics

The current cross sectional survey was approved by the moral council of research of the Islamic Azad University, Shahrekord, Iran.

Samples

From October 2017 to October 2018, a total of 740 seafood samples including shrimp (n= 350), fish (n= 140), crab (n= 50), oyster (n= 50) and shellfish (n= 150) samples were randomly collected from the fishing centers in Bushehr Port, Iran. All samples were caught from the Persian Gulf, Iran. Samples (100 g from the dorsal muscle) were positioned in distinct sterile plastic bags to avoid from falling and cross contamination and were proximately transferred to laboratory by ice box.

Isolation of Vibrio spp.

Twenty-five grams of seafood samples were homogenized with 225 ml of Alkaline Peptone Water (Merck, Germany) supplemented with 2% w/v sodium chloride (NaCl) (pH 8.5) for 60 s using a stomacher (BagMixer 400W, Interscience, Saint-Nom-la-Bretèche, France) and then incubated at 37 °C for 18 h. A loopful of enriched mixture was streaked on Thiosulphate Citrate Bile salt Sucrose agar (TCBSA, Merck, Germany) plates and incubated at 37 °C for 24 h. Bacterial identification was performed according to the color of colonies and their morphology and some biochemical tests including Gram staining, triple sugar iron (TSI), sulfur reduction (cysteine desulphurase), indole production (tryptophanase), and motility (SIM), oxidase, catalase, O-nitrophenyl-beta-D-galactosidase (ONPG), lysine decarboxylase (LDC), Ornithine decarboxylase (ODC), Arginine dehydratase (ADH) and Halotolerance tests [12, 13].

Polymerase Chain Reaction (PCR) detection of Vibrio spp.

Vibrio isolates were cultured on nutrient broth (Merck, Germany) and further incubated at 37 °C for 24 h. Principles of producing factory of DNA extraction kit (Thermo Fisher Scientific, Germany) were applied for DNA extraction. Extracted DNA samples were subjected to quantification by NanoDrop device (NanoDrop, Thermo Scientific, Waltham, USA), qualification (2% agarose gel) and purity checking (A260/A280). PCR detection of Vibrio spp. (V. cholerae, V. parahaemolyticus, V. vulnificus and V. harveyi) was conducted rendering beforehand documents (Table 1) [14, 15]. Thermo-cycler device (Flexycycler, Germany) was used. Fifteen microliters of the PCR products were electrophoresed using 1.5% agarose gel. Runs were comprised a negative control (PCR grade water) and positive controls (V. cholerae ATCC 9459, V. parahaemolyticus ATCC 17802, V. vulnificus ATCC 27562 and V. harveyi ATCC 14126).
Phenotypic resistance pattern

Phenotypic profile of antibiotic resistance of Vibrio isolates were examined by disk diffusion test. Mueller–Hinton agar media (Merck, Germany) were applied for this goal. Protocols of the Clinical and Laboratory Standards Institute (CLSI) were applied for this goal [16]. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol was applied for this goal [17]. A total of 0.5 McFarland concentration of bacteria were used for the antibiotic resistance analysis. Diverse antibiotic agents (Oxoid, UK) including ampicillin (10 µg/disk), penicillin G (10 units/disk), cefotaxime (30 µg/disk), cephalexin (30 µg/disk), gentamicin (10 µg/disk), streptomycin (10 µg/disk), erythromycin (15 µg/disk), azithromycin (15 µg/disk), tetracycline (30 µg/disk), ciprofloxacin (5 µg/disk), nalidixic acid (30 µg/disk), trimethoprim-sulfamethoxazole (25 µg/disk), and vancomycin (30 µg/disk) were examined in the antibiotic susceptibility testing. Media contained Vibrio spp. and also antibiotic disks were incubated at 37 °C for 24 h. After that, the diameter of growth inhibition zone were measured and interpreted according to CLSI. V. cholerae ATCC 9459, V. parahaemolyticus ATCC 17802, V. vulnificus ATCC 27562 and V. harveyi ATCC 14126 were applied as quality control microorganisms.

Statistical examination

Data gotten from the experimentations were classified in the Excel software. SPSS/21.0 software was accompanied for statistical examination. Chi-square and Fisher’s exact two-tailed tests were applied to measure any noteworthy association. Statistical signification was determined at a P value < 0.05.

TABLE 1. PCR circumstances applied for detection of Vibrio spp.

<table>
<thead>
<tr>
<th>Target gene</th>
<th>Primer sequence (5'-3')</th>
<th>PCR product (bp)</th>
<th>PCR programs</th>
<th>PCR Volume (50µL)</th>
</tr>
</thead>
</table>
| *V. cholerae* | F: AAGACCTCAACTGGCGGTA
R: GAAGGTGTTAGTGATCGCCCAGAGT
F: GCACGTGAACAACCGTTAGGT | 248 | 1 cycle: 93°C ------- 15 min.
35 cycle: 72°C ------- 90 s | 5 µL PCR buffer 10X
2 mM MgCl$_2$
150 µM dNTP
(2 mM MgCl$_2$, 150 µM dNTP)
(Fermentas) |
| *V. parahaemolyticus* | F: 897
R: ATTATCGATCGTGGCACCTCAC
F: GCACGTGAACAACCGTTAGGT | 410 | 1 cycle: 72°C ------- 7 min | 3 µL DNA template
3 µL PCR buffer 10X
5 µL PCR buffer 10X
(3 µL DNA template)
(Fermentas) |
| *V. vulnificus* | F: GTCTTAAGCGGTTGCTGCTGC
R: CGCCTCAAGTGCTGGTAGAAG | 382 | 1 cycle: 95°C ------- 4 min.
30 cycle: 72°C ------- 60 s
55°C ------- 60 s
1 cycle: 72°C ------- 10 min | 5 µL PCR buffer 10X
3 µL DNA template
5 µL PCR buffer 10X |
| *V. harveyi* | F: GAAG CAACACTCAAGCCGAT
R: GGTGAAGACTCATCAGCA | 663 | 1 cycle: 93°C ------- 15 min.
35 cycle: 72°C ------- 90 s | 5 µL PCR buffer 10X
3 µL DNA template
5 µL PCR buffer 10X
(3 µL DNA template) |
| *Vibrio spp.* | F: CGGTGAATGCGTAGAGAT
R: TTACTAGCCATGGAGGTTC | 410 | 1 cycle: 72°C ------- 7 min | 3 µL DNA template
5 µL PCR buffer 10X
3 µL DNA template
(3 µL DNA template) |

Antibiotic resistance pattern

Phenotypic profile of antibiotic resistance of Vibrio isolates were examined by disk diffusion test. Mueller–Hinton agar media (Merck, Germany) were applied for this goal. Protocols of the Clinical and Laboratory Standards Institute (CLSI) were applied for this goal [16]. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol was applied for this goal [17]. A total of 0.5 McFarland concentration of bacteria were used for the antibiotic resistance analysis. Diverse antibiotic agents (Oxoid, UK) including ampicillin (10 µg/disk), penicillin G (10 units/disk), cefotaxime (30 µg/disk), cephalexin (30 µg/disk), gentamicin (10 µg/disk), streptomycin (10 µg/disk), erythromycin (15 µg/disk), azithromycin (15 µg/disk), tetracycline (30 µg/disk), ciprofloxacin (5 µg/disk), nalidixic acid (30 µg/disk), trimethoprim-sulfamethoxazole (25 µg/disk), and vancomycin (30 µg/disk) were examined in the antibiotic susceptibility testing. Media contained Vibrio spp. and also antibiotic disks were incubated at 37 °C for 24 h. After that, the diameter of growth inhibition zone were measured and interpreted according to CLSI. V. cholerae ATCC 9459, V. parahaemolyticus ATCC 17802, V. vulnificus ATCC 27562 and V. harveyi ATCC 14126 were applied as quality control microorganisms.

Statistical examination

Data gotten from the experimentations were classified in the Excel software. SPSS/21.0 software was accompanied for statistical examination. Chi-square and Fisher’s exact two-tailed tests were applied to measure any noteworthy association. Statistical signification was determined at a P value < 0.05.
Results

Incidence of Vibrio spp. amongst examined seafood samples

Table 2 determines the incidence of Vibrio spp. isolated from diverse kinds of seafood samples. Seventy-nine out of 740 (10.67%) seafood samples were contaminated with Vibrio spp. Incidence of V. cholerae, V. parahaemolyticus, V. vulnificus and V. harveyi amongst the examined samples was 18.98%, 41.77%, 13.92% and 10.12%, respectively. Totally, 15.18% of examined samples were contaminated with other Vibrio spp., particularly V. alginolyticus, V. mimicus, V. fluvialis, and V. anguillarum. Shellfish (14.66%), shrimp (12%) and oyster (12%) were the most normally contaminated seafood samples with Vibrio spp. Fish samples (4.28%) had the lowest incidence of Vibrio spp. Fish was the most commonly contaminated sample with V. cholerae (50%). Shrimp was the most commonly contaminated sample with V. parahaemolyticus (45.23%). Crab was the most commonly contaminated sample with V. vulnificus (33.33%). Fish and oyster were the most commonly contaminated samples with V. harveyi (16.66%). Fish was the most commonly contaminated sample with other Vibrio spp. (21.42%). Statistically significant difference was found amid type of seafood samples and incidence of Vibrio spp. (P <0.05).

TABLE 2. Incidence of Vibrio spp. isolated from diverse kinds of seafood samples.

<table>
<thead>
<tr>
<th>Samples</th>
<th>N. samples collected</th>
<th>N. samples positive for Vibrio spp. (%)</th>
<th>N. samples positive for bacteria (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>V. cholerae</td>
<td>V. parahaemolyticus</td>
</tr>
<tr>
<td>Shrimp</td>
<td>350</td>
<td>42 (12)</td>
<td>8 (19.04)</td>
</tr>
<tr>
<td>Fish</td>
<td>140</td>
<td>6 (4.28)</td>
<td>3 (50)</td>
</tr>
<tr>
<td>Crab</td>
<td>50</td>
<td>3 (6)</td>
<td>1 (33.33)</td>
</tr>
<tr>
<td>Oyster</td>
<td>50</td>
<td>6 (12)</td>
<td>1 (16.66)</td>
</tr>
<tr>
<td>Shellfish</td>
<td>150</td>
<td>22 (14.66)</td>
<td>2 (9.09)</td>
</tr>
<tr>
<td>Total</td>
<td>740</td>
<td>79 (10.67)</td>
<td>15 (18.98)</td>
</tr>
</tbody>
</table>

Antibiotic resistance of Vibrio spp.

Table 3 determines the antibiotic resistance pattern of Vibrio spp. isolated from diverse kinds of seafood samples. V. cholerae isolates displayed the uppermost incidence of resistance toward tetracycline (93.33%), penicillin (88%), gentamicin (86.66%), ampicillin (86.66%), erythromycin (60%) and streptomycin (53.33%) antibiotic agents. V. parahaemolyticus isolates displayed the uppermost incidence of resistance toward gentamicin (75.75%), tetracycline (57.57%), penicillin (57.57%), and erythromycin (48.48%) antibiotic agents. V. vulnificus isolates displayed the uppermost incidence of resistance toward gentamicin (90.90%), tetracycline (90.90%), penicillin (90.90%), ampicillin (90.90%) and erythromycin (45.45%) antibiotic agents. V. harveyi isolates displayed the uppermost incidence of resistance toward ampicillin (100%), tetracycline (100%), gentamicin (87.50%), penicillin (75%), and erythromycin (62.50%) antibiotic agents. The lowermost incidence of resistance of Vibrio spp. was found toward vancomycin, nalidixic acid and azithromycin. Statistically significant difference was found amid type of seafood samples and incidence of antibiotic resistance (P <0.05).
Samples/Bacteria (N. positive)	P10	Cef	Cep	Gm	S10	Ert	Az	Tet	Cip	Nlx	Trt	Van		
V. cholerae (8)	6 (75)	5 (62.50)	3 (37.50)	3 (37.50)	7 (87.50)	5 (62.50)	4 (50)	2 (25)	7 (87.50)	2 (25)	1 (12.50)	3 (37.50)	2 (25)	
V. parahaemolyticus (19)	11 (57.89)	9 (47.36)	6 (31.57)	7 (36.84)	13 (68.42)	8 (42.10)	9 (47.36)	5 (26.31)	10 (52.63)	4 (21.05)	4 (21.05)	7 (36.84)	7 (36.84)	
V. vulnificus (9)	3 (100)	3 (100)	1 (33.33)	1 (33.33)	3 (100)	1 (33.33)	2 (66.66)	1 (33.33)	3 (100)	1 (33.33)	-	1 (33.33)	-	
E. harveyi (3)	3 (100)	2 (66.66)	1 (33.33)	1 (33.33)	3 (100)	1 (33.33)	2 (66.66)	-	3 (100)	1 (33.33)	-	1 (33.33)	-	
Shrimp	E. coli (1)	1 (100)	1 (100)	-	-	1 (100)	-	1 (100)	1 (100)	-	1 (100)	-		
V. parahaemolyticus (1)	1 (100)	1 (100)	-	-	1 (100)	-	-	-	1 (100)	1 (100)	-	1 (100)	-	
V. vulnificus (1)	1 (100)	1 (100)	-	-	1 (100)	-	-	-	1 (100)	1 (100)	-	1 (100)	-	
V. cholerae (1)	1 (100)	1 (100)	-	-	1 (100)	1 (100)	-	-	1 (100)	1 (100)	-	1 (100)	-	
E. harveyi (1)	-	-	-	-	-	-	-	-	-	-	-	-	-	
Fish	V. parahaemolyticus (1)	3 (100)	1 (33.33)	1 (33.33)	1 (33.33)	3 (100)	1 (33.33)	2 (66.66)	-	3 (100)	1 (33.33)	-	1 (33.33)	-
V. vulnificus (1)	1 (100)	1 (100)	-	-	1 (100)	-	1 (100)	-	1 (100)	1 (100)	-	1 (100)	-	
V. cholerae (1)	1 (100)	1 (100)	1 (100)	1 (100)	1 (100)	-	1 (100)	1 (100)	1 (100)	1 (100)	-	-	-	
V. harveyi (1)	-	-	-	-	-	-	-	-	-	-	-	-	-	
Total	V. parahaemolyticus (9)	8 (88.88)	7 (77.77)	2 (22.22)	4 (44.44)	7 (77.77)	2 (22.22)	3 (33.33)	3 (33.33)	4 (44.44)	2 (22.22)	1 (11.11)	2 (22.22)	2 (22.22)
V. vulnificus (5)	4 (80)	4 (80)	1 (20)	3 (60)	4 (80)	-	1 (20)	1 (20)	4 (80)	1 (20)	-	-	1 (20)	-
E. harveyi (2)	3 (100)	2 (66.66)	1 (33.33)	1 (33.33)	2 (66.66)	-	3 (100)	1 (33.33)	-	1 (33.33)	-	-	-	
Oyster	V. parahaemolyticus (15)	13 (86.66)	12 (84.23)	5 (33.33)	4 (26.66)	13 (86.66)	8 (53.33)	9 (60)	4 (26.66)	14 (93.33)	7 (46.66)	4 (26.66)	7 (46.66)	3 (20)
V. vulnificus (1)	10 (90.91)	10 (90.91)	2 (18.18)	4 (36.36)	10 (90.91)	1 (9.09)	5 (45.45)	2 (18.18)	10 (90.91)	5 (45.45)	-	2 (18.18)	1 (9.09)	
V. cholerae (1)	8 (100)	6 (75)	2 (25)	2 (25)	7 (87.50)	2 (25)	5 (62.50)	-	8 (100)	2 (25)	-	3 (37.50)	-	

Shellfish	V. parahaemolyticus (33)	24 (27.27)	19 (57.57)	9 (27.27)	12 (36.36)	25 (75.75)	11 (33.33)	16 (48.48)	8 (92.31)	19 (57.57)	9 (27.27)	5 (15.15)	12 (36.36)	9 (27.27)
V. vulnificus (11)	10 (90.91)	10 (90.91)	2 (18.18)	4 (36.36)	10 (90.91)	1 (9.09)	5 (45.45)	2 (18.18)	10 (90.91)	5 (45.45)	-	2 (18.18)	1 (9.09)	
V. cholerae (1)	8 (100)	6 (75)	2 (25)	2 (25)	7 (87.50)	2 (25)	5 (62.50)	-	8 (100)	2 (25)	-	3 (37.50)	-	

| Total | E. coli (1) | 10 (100) | 7 (70) | 3 (30) | 3 (30) | 7 (70) | 1 (10) | 5 (50) | 1 (10) | 1 (10) | - | 1 (10) | - |
| Cef: cefotaxim (5 µg/disk), Cep: cefepime (5 µg/disk), Gm: gentamicin (10 µg/disk), S10: streptomycin (10 µg/disk), Ert: erythromycin (15 µg/disk), Az: azithromycin (15 µg/disk), Tet: tetracycline (30 µg/disk), Cip: ciprofloxacin (5 µg/disk), Nlx: nalidixic acid (30 µg/disk), Trt: trimethoprim-sulfamethoxazole (25 µg/disk), Van: vancomycin (30 µg/disk). |
Discussion

Seafoods are in close contact with the microbial flora of sea and ocean and also cross contamination in harbors and fishing centers. Thus, two potential source of microbial contamination are existed for contamination of seafoods. Vibrio spp. are extensively spread in sea and ocean water, globally. Furthermore, contaminated humans may be reservoir of some Vibrio spp. [18].

The incidence of Vibrio spp. in the current survey was 10.67% in which shellfish samples had the highest rate of contamination (14.66%). V. parahaemolyticus (41.77%) was the most routinely detected bacteria amongst the Vibrio spp. Total incidence of V. cholerae, V. parahaemolyticus, V. vulnificus and V. harveyi amongst the Vibrio spp. were 18.98%, 41.77%, 13.92% and 10.12%, respectively. The presence of Vibrio spp. in seafood samples, particularly shellfish, could be linked to their filter-feeding activity. Water particle-associated and water free-living pathogenic microorganisms may be filtered throughout seafood’s feeding and can gather in gastric tract or gills. Feeding of contaminated zooplanktons is supplementary imperative likely hazard issue for the boost incidence of Vibrio spp. in assessed samples. Moreover, opportunity for occurrence of cross contamination with infected human and staffs of the hunting centers is a conceivable reason for the presence of Vibrio spp. in studied samples. Moreover, using contaminated ice for cooling of seafood samples is another important factor. Differences in diet of studied samples, distance of living from the beach, depth of their lives and finally their route of maintenance are probable factors affecting differences in the incidence of different Vibrio spp. in diverse samples. V. cholerae had the highest incidence in fish samples (50%). This may be owing to the occurrence of cross contamination by infected staffs and workers because V. cholerae is more prone to transmit from humans to seafood samples. V. harveyi, V. vulnificus and V. parahaemolyticus were detected in low percent of examined fish and crab samples, it has been suggested that the possibility of transmission of these species through the consumption of fish and crab in Iran may be very low. Similarly, lower incidence of V. cholerae in crab and oyster, V. vulnificus in oyster and V. harveyi in oyster may express similar interpretation as above. However, role of fish and crab in transmission of V. cholerae, oyster, shrimp, shellfish and crab in transmission of V. parahaemolyticus, crab and shellfish in transmission of V. vulnificus and finally oyster and shellfish in transmission of V. harveyi have been approved in this survey. Moreover, roles of shrimp and shellfish samples have been approved for transmission of other Vibrio spp.

Some surveys have been conducted in this field in diverse parts of the world. Messelhäusser et al. [19] conveyed the boost incidence of V. parahaemolyticus, V. cholerae and V. vulnificus in seafood and fish samples. Likewise, roles of seafood samples as reservoirs of non-O1 or O139 strains of V. cholerae, V. parahaemolyticus and V. vulnificus have been determined [3, 18]. Robert-Pillot et al. [20] determined that 34.70% of examined seafood samples were contaminated with Vibrio spp. in which 89.60% were positive for V. parahaemolyticus with higher incidence in crustaceans (79.30%), fish (8.60%) and shellfish (1.70%). They also revealed that V. vulnificus was perceived in crustaceans (16.51%) and fish (9.40%) samples. They also exhibited that only a frozen fish was positive for V. cholerae. Thongkao et al. [21] reported that the incidence of V. harveyi, V. parahaemolyticus and V. vulnificus amongst the marine shellfishes samples in Thailand was 9.33%, 5.33% and 0%, respectively. An Iranian survey [22] determined that the incidence of V. vulnificus, V. parahaemolyticus, V. mimicus, V. alginolyticus and V. harveyi in fish and shrimp samples caught from the Persian Gulf was 2.65%, 3.53%, 1.76%, 2.65% and 11.50%, respectively. Raissy et al. [23] reported that the incidence of V. vulnificus, V. alginolyticus, V. mimicus, V. parahaemolyticus and V. harveyi amongst the lobster and crab samples caught from the Persian Gulf, Iran was 13.63%, 9.09%, 4.54%, 3.03% and 3.03%, respectively. Considerable incidence of Vibrio spp. in diverse kinds of seafood samples from Iran was reported previously [24, 25]. V. parahaemolyticus was the most prevalent Vibrio spp. amongst the examined seafood samples. Similarly, V. parahaemolyticus was the most prevalent cause of seafood contamination in Vietnam [26], Malaysia [27], China [28] and India [29]. Total incidence of V. parahaemolyticus was 47.50% in surveys conducted on diverse kinds of seafood samples in recent years in which overall incidence of bacterium in oyster, clams, fish, shrimp, mussels, scallop and periwinkle was 63.40%, 52.90%, 51.00%, 48.30%, 28.00%, 28.00% and 28.00%, respectively [30]. Similarly, boost incidence of V. cholerae in fish samples has been reported from Israel [4], Bangladesh [31], Tanzania [32] and Czech Republic [33]. Similar to findings of the present research, both V. vulnificus and V. harveyi had lower incidences in

seafood samples examined previously [21, 34-36]. Accordingly, *V. harveyi* is more considered as a pathogen of marine fish, shrimp and invertebrates which caused boost economic burden into the aquacultures [37, 38]. The contamination rate of seafood samples with *Vibrio* spp. vary amid diverse researches. The difference in data advises that time, season, place of sampling, method of sampling, types of samples and even laboratory techniques applied in researches may affect the outcomes of surveys. Moreover, difference hygienic levels of fishing centers may affect the incidence of bacteria in diverse investigations.

Antibiotic selection was done based on their availability, prescription rate (highly prescribed antibiotics were selected) and also principles of the CLSI. Unlawful and vague antibiotic prescription particularly in veterinary may be the chief reason for the boost incidence of resistance in the *Vibrio* spp. *V. cholerae* isolates had the uppermost and most diverse incidence of resistance to antibiotic agents. These findings are may be owing to the transmission of bacteria from infected humans and staffs. Other *Vibrio* spp. had lower resistance toward examined antibiotic agents because they were often transmitted from the sea to seafood samples, which is not usually an antibiotic source. Boost incidence of resistance of *Vibrio* spp. toward tetracycline, penicillin, gentamicin, ampicillin, erythromycin and streptomycin antibiotic agents was also conveyed from Iran [39], Malaysia [40], Australia [41] and Brazil [42]. Amalina et al. [43] conveyed that the incidence of *Vibrio* spp. amongst the seafood samples was 72% in which the incidence of *V. parahaemolyticus, V. vulnificus, V. cholerae* and *V. harveyi* was 25%, 14%, 3% and 1%, respectively. They exhibited that incidence of resistance of *Vibrio* spp. toward ampicillin, penicillin g, bacitracin, erythromycin, streptomycin, tetracycline and vancomycin was 80%, 80%, 44%, 30%, 14%, 14%, and 54%, respectively. Kumar et al. [44] conveyed that *Vibrio* spp. isolated from seafood samples from India were resistant to erythromycin, penicillin and ampicillin antibiotic agents. Boost incidence of resistance of *V. parahaemolyticus* bacteria isolated from seafood samples toward ampicillin was also reported [28, 45, 46]. High incidence of resistance of *Vibrio* spp. against ampicillin and penicillin was also reported [47]. Ampicillin-, amoxicillin- and erythromycin-resistant *V. harveyi* was also reported in fish samples collected from Italy [48]. Oh et al. [49] determined that the incidence of resistance of *V. parahaemolyticus* bacteria isolated from seafood samples collected from Republic of Korea toward ampicillin, amoxicillin, cefepime, cefotaxime, streptomycin, gentamicin, amikacin, ciprofloxacin, nalidixic acid, trimethoprim-sulfamethoxazole, chloramphenicol, tetracycline, rifampin and erythromycin antibiotic agents was 57.80%, 0%, 1.40%, 0.9%, 8.70%, 1.80%, 2.80%, 0.50%, 2.80%, 1.40%, 3.70%, 3.70%, 11.90% and 0.90%, respectively. Unconditionally, occurrence of foodborne bacteria, particularly those with an emergence of antibiotic resistance, has been measured amongst other types of Iranian foodstuffs and in some cases veterinary samples [50-59]. Findings of the current investigation can use as a preliminary research about the epidemiology of *Vibrio* spp. in seafood samples to design some useful solutions to prevent outbreaks of foodborne diseases. Full cooking of seafood samples is recommended to decrease the risk of *Vibrio* spp. in seafood samples.

Conclusion

An existing survey is one of the most comprehensive research about the incidence and antibiotic resistance of *Vibrio* spp., particularly *V. parahaemolyticus* bacteria recovered from fish, shrimp, crab, oyster and shellfish samples in the Persian Gulf, Iran. Outcomes signifies boost incidence of *Vibrio* spp. amongst the examined samples. Furthermore, higher incidence of *Vibrio* spp. was found in shellfish, shrimp and oyster samples. The most routinely reservoirs and sources of *V. cholerae*, *V. parahaemolyticus*, *V. vulnificus* and *V. harveyi* bacteria were fish, shrimp, crab and oyster, respectively. Most of isolates were resistant to tetracycline, penicillin, gentamicin, ampicillin, erythromycin and streptomycin antibiotic agents. *V. cholerae* strains had the highest and most diverse incidence of resistance toward antibiotic agents. Thus, full cooking of seafood samples before consumption and monitor the prescription of antibiotic can diminish the occurrence of antibiotic resistant-*Vibrio* foodborne diseases. However, further surveys are essential to found more details about the impact of *Vibrio* spp. in seafood samples.

Acknowledgement

Many thanks from the professional staffs of the Veterinary Organization, Boushehr province, Iran for their supports in clinical and laboratory examinations. The survey was confirmed and supported by the Islamic Azad University, Shahrekord Branch, Shahrekord, Iran.
Funding statement: Self-funding
Conflict of Interest: No conflict of interest

References

